• Title/Summary/Keyword: Heading Tracking

Search Result 76, Processing Time 0.026 seconds

Design of a Sliding Mode Control-Based Trajectory Tracking Controller for Marine Vehicles

  • Xu, Zhi-Zun;Kim, Heon-Hui;Park, Gyei-Kark;Nam, Taek-Kun
    • Journal of Navigation and Port Research
    • /
    • v.42 no.2
    • /
    • pp.87-96
    • /
    • 2018
  • A trajectory control system plays an important role in controlling motions of marine vehicle when a series of way points or a path is given. In this paper, a sliding mode control (SMC)-based trajectory tracking controller for marine vehicles is presented. A small-sized unmanned ship is considered as a control object. Both speed and heading angle of a ship should be controlled for tracking control. The common point of related researches was to separate ship's speed and heading angle in control methods. In this research, a new control law from a general sliding mode theory that can be applied to MIMO (multi input multi output) system is derived and both speed and heading angle of a ship can be controlled simultaneously. The propulsion force and rudder force are also applied in modeling stage to achieve accurate simulation. Disturbance induced by wind is also tackled in the dynamics considering robustness of the proposed control scheme. In the simulation, we employed a way-point method to generate ship's trajectory and applied the proposed control scheme to ship's trajectory tracking control. Our results confirmed that the tracking error was converged to zero, thus demonstrating the effectiveness of the proposed method.

A Way-Point Tracking of Hovering AUV by PID control (PID 제어기를 이용한 호버링 AUV의 경유점 추적)

  • Kim, Min J.;Bae, Seol B.;Baek, Woon-Kyung;Joo, Moon G.;Ha, Kyoung Nam
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.10 no.4
    • /
    • pp.257-264
    • /
    • 2015
  • For the tracking of the way-points of hovering AUV (HAUV), we suggest a simple PID controller. The way-points are designed to approach to a virtual underwater structure and the heading angles at each way-point are set to look at the structure in the face. The proposed controller consists of a vertical controller to maintain the depth and pitch angle, and a horizontal controller to move to the desired position as well as to adjust the heading angle of the HAUV. In the simulation using Matlab/Simulink, the HAUV with the proposed PID controller is shown to track all the way-points within 1 m range while maintaining proper heading angle at each way-point.

Multi-Attitude Heading Reference System-based Motion-Tracking and Localization of a Person/Walking Robot (다중 자세방위기준장치 기반 사람/보행로봇의 동작추적 및 위치추정)

  • Cho, Seong Yun
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.22 no.1
    • /
    • pp.66-73
    • /
    • 2016
  • An Inertial Measurement Unit (IMU)-based Attitude and Heading Reference System (AHRS) can calculate attitude and heading information with long-term accuracy and stability by combining gyro, accelerometer, and magnetic compass signals. Motivated by this characteristic of the AHRS, this paper presents a Motion-Tracking and Localization (MTL) method for a person or walking robot using multi-AHRSs. Five AHRSs are attached to the two calves, two thighs, and waist of a person/walking robot. Joints, links, and coordinate frames are defined on the body. The outputs of the AHRSs are integrated with link data. In addition, a supporting foot is distinguished from a moving foot. With this information, the locations of the joints on the local coordinate frame are calculated. The experimental results show that the presented MTL method can track the motion of and localize a person/walking robot with long-term accuracy in an infra-less environment.

Proof of SATCOM Antenna Heading Angle's Analytical Model (위성통신 안테나의 위성 지향각도 해석적 모델의 실증)

  • Cho, Gyuhan
    • Journal of the Korea Society for Simulation
    • /
    • v.28 no.3
    • /
    • pp.75-82
    • /
    • 2019
  • A Satellite Communication (SATCOM), which is applied to various systems to communicate with other systems at the limited wired communication situation, is required to head at a stable point of the space, because this system uses a geostationary satellite. It is important to know satellite tracking heading angles such as elevation angle and azimuth angle for the immovable antenna's latitude, longitude, and altitude. Moreover, calculation of heading angle is critical for SATCOM antenna on a moving platform. In this study, a antenna heading angle calculation method is applied to compute elevation and azimuth angle for a SATCOM antenna and the heading angle simulation is executed for the Korea peninsula and surrounding areas. To verify this simulation, satellite tracking test is conducted using a SATCOM antenna which uses monopulse signal tracking method. The simulation is confirmed by comparing this test result with the simulation. And we make a suggestion for calculation of polarization angle of this antenna.

A Study on MTL Device Design and Motion Tracking in Virtual Reality Environments

  • Oh, Am-Suk
    • Journal of information and communication convergence engineering
    • /
    • v.17 no.3
    • /
    • pp.205-212
    • /
    • 2019
  • Motion tracking and localization devices are an important building block of motion tracking systems in a virtual reality (VR) environment. This study is about improving the accuracy of motion and location for enhancing user immersion in experience type VR environment to position tracking technique. In this study, we propose and test a design of such a device. The module data test of the attitude and heading reference system shows that the implementation with the MPU-9250 sensor is successful and adequate to be used with short operation time. We consider various sensor hardware dependencies of VR, and compare various correction methods and filtering methods to lower the motion to photon (MTP) time that user movement is fully reflected on the display using sensor devices. The Kalman filter is used to combine the accelerometer with the gyroscope in the sensing unit.

Study on a Waypoint Tracking Algorithm for Unmanned Surface Vehicle (USV) (무인수상선을 위한 경유점 추적 제어 알고리즘에 관한 연구)

  • Son, Nam-Sun;Yoon, Hyeon-Kyu
    • Journal of Navigation and Port Research
    • /
    • v.33 no.1
    • /
    • pp.35-41
    • /
    • 2009
  • A waypoint tracking algorithm(WTA) is designed for Unmanned Surface Vehicle(USV) in which water-jet system is installed for propulsion To control the heading of USV for waypoint tracking, the steering nozzle of water-jet need, to be controlled. Firstly, target heading is calculated by using the position information of waypoints input from the land control center. Secondly, the command for the steering nozzle of water-jet is calculated in real time by using the heading and the rate-of-turn( ROT) from magnetic compass, In this study, in order to consider the drift angle due to external disturbance such as wind and wave, the course of ground( COG) can be used instead of heading at higher speed than a certain value, To test the performance of newly-designed WTA, the tests were carried out in actual sea area near Gwang-an bridge of Busan. In this paper, the sea trial test results from WTA are analyzed and compared with those from manual control and those from commercial controller.

Double Sliding Surfaces based on a Sliding Mode Control for a Tracking Control of Mobile Robots (이동 로봇의 추종 제어를 위한 이중 슬라이딩 표면에 기반한 슬라이딩 모드 제어)

  • Lee, Jun Ku;Choi, Yoon Ho;Park, Jin Bae
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.19 no.6
    • /
    • pp.495-500
    • /
    • 2013
  • This paper proposes a double sliding surfaces based on a sliding mode control for a tracking control of nonholonomic mobile robots in the Cartesian coordinates. In order to remove sliding surface constraints, we design the additional sliding surface for the heading angle with respect to the newly defined coordinates. Then, we define the switching law based on the posture error to combine the designed sliding surface with the previous one. By using the double sliding surfaces and the switching law, we obtain the control law for arbitrary trajectories. It is proved that the position tracking error and the heading direction error asymptotically converge to zero, respectively, with the Lyapunov stability theory. Finally, through computer simulations, we demonstrate the effectiveness of the proposed control system.

Target Tracking Control of Mobile Robots with Vision System in the Absence of Velocity Sensors (속도센서가 없는 비전시스템을 이용한 이동로봇의 목표물 추종)

  • Cho, Namsub;Kwon, Ji-Wook;Chwa, Dongkyoung
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.62 no.6
    • /
    • pp.852-862
    • /
    • 2013
  • This paper proposes a target tracking control method for wheeled mobile robots with nonholonomic constraints by using a backstepping-like feedback linearization. For the target tracking, we apply a vision system to mobile robots to obtain the relative posture information between the mobile robot and the target. The robots do not use the sensors to obtain the velocity information in this paper and therefore assumed the unknown velocities of both mobile robot and target. Instead, the proposed method uses only the maximum velocity information of the mobile robot and target. First, the pseudo command for the forward linear velocity and the heading direction angle are designed based on the kinematics by using the obtained image information. Then, the actual control inputs are designed to make the actual forward linear velocity and the heading direction angle follow the pseudo commands. Through simulations and experiments for the mobile robot we have confirmed that the proposed control method is able to track target even when the velocity sensors are not used at all.

A hybrid navigation system of underwater vehicles using fuzzy inferrence algorithm (퍼지추론을 이용한 무인잠수정의 하이브리드 항법 시스템)

  • 이판묵;이종무;정성욱
    • Journal of Ocean Engineering and Technology
    • /
    • v.11 no.3
    • /
    • pp.170-179
    • /
    • 1997
  • This paper presents a hybrid navigation system for AUV to locate its position precisely in rough sea. The tracking system is composed of various sensors such as an inclinometer, a tri-axis magnetometer, a flow meter, and a super short baseline(SSBL) acoustic position tracking system. Due to the inaccuracy of the attitude sensors, the heading sensor and the flowmeter, the predicted position slowly drifts and the estimation error of position becomes larger. On the other hand, the measured position is liable to change abruptly due to the corrupted data of the SSBL system in the case of low signal to noise ratio or large ship motions. By introducing a sensor fusion technique with the position data of the SSBL system and those of the attitude heading flowmeter reference system (AHFRS), the hybrid navigation system updates the three-dimensional position robustly. A Kalman filter algorithm is derived on the basis of the error models for the flowmeter dynamics with the use of the external measurement from the SSBL. A failure detection algorithm decides the confidence degree of external measurement signals by using a fuzzy inference. Simulation is included to demonstrate the validity of the hybrid navigation system.

  • PDF

Development of Steering Control System for Autonomous Vehicle Using Geometry-Based Path Tracking Algorithm

  • Park, Myungwook;Lee, Sangwoo;Han, Wooyong
    • ETRI Journal
    • /
    • v.37 no.3
    • /
    • pp.617-625
    • /
    • 2015
  • In this paper, a steering control system for the path tracking of autonomous vehicles is described. The steering control system consists of a path tracker and primitive driver. The path tracker generates the desired steering angle by using the look-ahead distance, vehicle heading, and a lateral offset. A method for applying an autonomous vehicle to path tracking is an advanced pure pursuit method that can reduce cutting corners, which is a weakness of the pure pursuit method. The steering controller controls the steering actuator to follow the desired steering angle. A servo motor is installed to control the steering handle, and it can transmit the steering force using a belt and pulley. We designed a steering controller that is applied to a proportional integral differential controller. However, because of a dead band, the path tracking performance and stability of autonomous vehicles are reduced. To overcome the dead band, a dead band compensator was developed. As a result of the compensator, the path tracking performance and stability are improved.