• Title/Summary/Keyword: Head-related impulse response (HRIR)

Search Result 3, Processing Time 0.017 seconds

A DNN-Based Personalized HRTF Estimation Method for 3D Immersive Audio

  • Son, Ji Su;Choi, Seung Ho
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.13 no.1
    • /
    • pp.161-167
    • /
    • 2021
  • This paper proposes a new personalized HRTF estimation method which is based on a deep neural network (DNN) model and improved elevation reproduction using a notch filter. In the previous study, a DNN model was proposed that estimates the magnitude of HRTF by using anthropometric measurements [1]. However, since this method uses zero-phase without estimating the phase, it causes the internalization (i.e., the inside-the-head localization) of sound when listening the spatial sound. We devise a method to estimate both the magnitude and phase of HRTF based on the DNN model. Personalized HRIR was estimated using the anthropometric measurements including detailed data of the head, torso, shoulders and ears as inputs for the DNN model. After that, the estimated HRIR was filtered with an appropriate notch filter to improve elevation reproduction. In order to evaluate the performance, both of the objective and subjective evaluations are conducted. For the objective evaluation, the root mean square error (RMSE) and the log spectral distance (LSD) between the reference HRTF and the estimated HRTF are measured. For subjective evaluation, the MUSHRA test and preference test are conducted. As a result, the proposed method can make listeners experience more immersive audio than the previous methods.

Modeling of individual head-related impulse responses using a set of general basis functions (보편적인 기저함수를 이용한 개인의 머리전달함수 모델링)

  • Hwang, Sung-Mok;Park, Young-Jin;Park, Youn-Sik
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.11a
    • /
    • pp.1430-1436
    • /
    • 2007
  • A principal components analysis (PCA) of the median head-related impulse responses (HRIRs) in the CIPIC HRTF database reveals that the individual HRIRs can be adequately reconstructed by a linear combination of 12 orthonormal basis functions. These basis functions can be used generally to model arbitrary HRIRs, which are not included in the process to obtain the basis functions. To clarify whether these basis functions can be used to model other set of arbitrary HRIRs, an numerical error analysis for modeling and a series of subjective listening tests were carried out using the measured and modeled HRIRs. The results showed that the set of individual HRIRs, which were measured in our lab using different measurement conditions, techniques, and source positions, can be well modeled with reasonable accuracy. Furthermore, all subjects reported not only the accurate vertical perception but also the front-back discrimination with the modeled HRIRs based on 12 basis functions. However, as less basis functions were used for HRIR modeling, the modeling accuracy and localization performance deteriorated.

  • PDF

Design and Implementation of Crosstalk Canceller Using Warped Common Acoustical Poles (주파수 워핑된 공통 극점을 이용한 음향 간섭제거기의 설계 및 구현)

  • Jeong, Jae-Woong;Park, Young-Cheol;Youn, Dae-Hee;Lee, Seok-Pil
    • The Journal of the Acoustical Society of Korea
    • /
    • v.29 no.5
    • /
    • pp.339-346
    • /
    • 2010
  • For the implementation of the crosstalk canceller, the filters with large length are needed, which is because that the length of the filters greatly depends on the length of the head-related impulse responses. In order to reduce the length of the crosstalk cancellation filters, many methods such as frequency warping, common acoustical pole and zero (CAPZ) modeling have been researched. In this paper, we propose a new method combining these two methods. To accomplish this, we design the filters using the CAPZ modeling on the warped domain, and then, we implement the filters using the poles and zeros de-warped to the linear domain. The proposed method provides improved channel separation performance through the frequency warping and significant reduction of the complexity through the CAPZ modeling. These are confirmed through various computer simulations.