• Title/Summary/Keyword: Head-mounted device

Search Result 66, Processing Time 0.025 seconds

A study on the application of virtual reality technology to exhibition space (가상현실 기술의 전시 공간 적용에 관한 연구)

  • Lee, Jae-Young;Kwon, Jun-Sik
    • Journal of Digital Contents Society
    • /
    • v.18 no.8
    • /
    • pp.1585-1591
    • /
    • 2017
  • In this study, we propose the application of exhibition contents using virtual environment technology in exhibition space. Research on the virtual environment is continuing. Particularly, research on virtual reality technology is one of the most active research fields. As researches and developments of augmented reality technologies have been carried out with the spread of smart phones, researches on virtual reality technologies have also made a lot of progress with emphasis on games and interactivity. Especially, development of hardware, software, and content is accelerating this year, including the development of various types of physical reality devices, especially HMD (Head Mounted Device) equipment and new product announcements. We want to study and apply the environment in which the system based on this virtual reality technology can approach and experience more user friendly in the exhibition space.

A Study on Comparative Experiment of Hand-based Interface in Immersive Virtua Reality (몰입형 가상현실에서 손 기반 인터페이스의 비교 실험에 관한 연구)

  • Kim, Jinmo
    • Journal of the Korea Computer Graphics Society
    • /
    • v.25 no.2
    • /
    • pp.1-9
    • /
    • 2019
  • This study compares hand-based interfaces to improve a user's virtual reality (VR) presence by enhancing user immersion in VR interactions. To provide an immersive experience, in which users can more directly control the virtual environment and objects within that environment using their hands and, to simultaneously minimize the device burden on users using immersive VR systems, we designed two experimental interfaces (hand motion recognition sensor- and controller-based interactions). Hand motion recognition sensor-based interaction reflects accurate hand movements, direct gestures, and motion representations in the virtual environment, and it does not require using a device in addition to the VR head mounted display (HMD). Controller-based interaction designs a generalized interface that maps the gesture to the controller's key for easy access to the controller provided with the VR HMD. The comparative experiments in this study confirm the convenience and intuitiveness of VR interactions using the user's hand.

Proposal of Safe PIN Input Method on VR (VR 상에서의 안전한 PIN 입력 방법 제안)

  • Kim, Hyun-jun;Kwon, Hyeok-dong;Kwon, Yong-bin;Seo, Hwa-jeong
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.23 no.5
    • /
    • pp.622-629
    • /
    • 2019
  • VR(Virtual Reality), which provides realistic services in virtual reality, provides a similar experience using a Head Mounted Display(HMD) device. When the HMD device is worn, it can not recognize the surrounding environment and it is easy to analyze the input pattern of the user with the Shoulder Surfing Attack(SSA) when entering the Personal Identification Number(PIN). In this paper, we propose a method to safeguard the user's password even if the hacker analyzes the input pattern while maintaining the user's convenience. For the first time, we implemented a new type of virtual keypad that deviates from the existing rectangle shape according to the VR characteristics and implemented the lock object for intuitive interaction with the user. In addition, a smart glove using the same sensor as the existing input devices of the VR and a PIN input method suitable for the rotary type are implemented and the safety of the SSA is verified through experiments.

Development of Prototype VR Ship Simulator System Using HMD (HMD를 사용한 가상현실 선박 시뮬레이터 시스템의 프로토타입 개발)

  • 임정빈;공길영;구자영
    • Journal of the Korean Institute of Navigation
    • /
    • v.24 no.3
    • /
    • pp.133-140
    • /
    • 2000
  • The paper deals with the implementation of prototype Ship Simulator system (VRSS) by Virtual Reality techniques with Head Mounted Display (HMD) device. The prototype VRSS was consists of PC-based human sensors, object oriented operating system. In addition, two kinds of databases arranged from Head Related Transfer Functions and 3D object models were used to create 3D sea sound, and to construct virtual world, respectively. Using the prototype system, we carried out some simulation tests for the overtaking situation to prevent collisions at sea, and discussed on the usability of the system. As results from simulations, the prototype VRSS can provide multisensory and interactive display environment. The results gave rise to the user interaction with 3D objects that give realistic reproduction of navigational environments under a given scenario. Thus, we found that the prototype VRSS should be one of the next-generation ship simulation system.

  • PDF

An Interactive Robotic Cane

  • Yoon, Joongsun
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.5 no.1
    • /
    • pp.5-12
    • /
    • 2004
  • A human-friendly interactive system that is based on the harmonious symbiotic coexistence of human and robots is explored. Based on this interactive technology paradigm, a robotic cane is proposed for blind or visually impaired travelers to navigate safely and quickly through obstacles and other hazards faced by blind pedestrians. The proposed robotic cane, "RoJi,” consists of a long handle with a button-operated interface and a sensor head unit that is attached at the distal end of the handle. A series of sensors, mounted on the sensor head unit, detect obstacles and steer the device around them. The user feels the steering command as a very noticeable physical force through the handle and is able to follow the path of the robotic cane easily and without any conscious effort. The issues discussed include methodologies for human-robot interactions, design issues of an interactive robotic cane, and hardware requirements for efficient human-robot interactions.ions.

The Effectiveness of a Proposed VR Model as a Method to Relieve Distress and Improve Communication during Pediatric Dental Treatment in 3-9 Year-Old Children

  • Aalqeel, Samia;Song, Eun-Jee
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2022.05a
    • /
    • pp.577-578
    • /
    • 2022
  • This study addresses the effectiveness of a VR model that is designed to relieve distress and improve communication during pediatric dental treatment for 3-9 year-old young patients. This is due to the challenging nature of the dental treatment for both young patients and pediatric dentists. The proposed model is designed to alleviate the unpleasant experience a young patient might go through during the dental treatment through providing a VR content to be displayed in on a head-mounted device during the treatment session. In addition, the model is designed to help decrease the frequent movement of the young patient during the dental treatment session by directing the patient's head to the immersive VR content. Furthermore, the model could solve the communication difficulties that might occur between pediatric dentists and young patients during the treatment session by showing live instructions related to adjusting body postures

  • PDF

Implementation of Virtual Reality Engine Using Patriot Tracking Device (Patriot Tracking Device를 이용한 가상현실 엔진 구현)

  • Kim Eun-Ju;Lee Yong-Woog;Song Chang-Geun
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2006.05a
    • /
    • pp.143-146
    • /
    • 2006
  • 본 연구는 개인용 PC 에 장착할 수 있는 저가의 가상현실게임 엔진을 설계하고 구현한다. 가상현실 엔진구현에서는 주요한 입출력 장치인 Tracker 와 HMD(Head Mounted Display) 그리고 조이스틱과 마우스의 장착이 필수적이다. 가상현실 엔진을 연동하기 위한 입출력 클래스를 설계하고 입력장치로 마우스와 조이스틱, 출력장치로 HMD 를 장착하였으며 Tracker 의 구현은 상업용 제품인 Polhemus의 Patriot tracker를 이용하였다.

  • PDF

Hardware Digital Color Enhancement for Color Vision Deficiencies

  • Chen, Yu-Chieh;Liao, Tai-Shan
    • ETRI Journal
    • /
    • v.33 no.1
    • /
    • pp.71-77
    • /
    • 2011
  • Up to 10% of the global population suffers from color vision deficiency (CVD) [1], especially deuteranomaly and protanomaly, the conditions in which it is difficult to discriminate between red and green hues. For those who suffer from CVD, their career fields are restricted, and their childhood education is frustrating. There are many optical eye glasses on the market to compensate for this disability. However, although they are attractive due to their light weight, wearing these glasses will decrease visual brightness and cause problems at night. Therefore, this paper presents a supplementary device that comprises a head-mounted display and an image sensor. With the aid of the image processing technique of digital color space adjustment implemented in a high-speed field-programmable gate array device, the users can enjoy enhanced vision through the display without any decrease in brightness.

MPEG Omnidirectional Media Format (OMAF) for 360 Media (360 미디어를 위한 MPEG Omnidirectional Media Format (OMAF) 표준 기술)

  • Oh, Sejin
    • Journal of Broadcast Engineering
    • /
    • v.22 no.5
    • /
    • pp.600-607
    • /
    • 2017
  • Virtual Reality (VR) has lately gained significant attention primarily driven by the recent market availability of consumer devices, such as mobile phone-based Head Mounted Displays (HMDs). Apart from classic gaming use cases, the delivery of $360^{\circ}$ video is considered as another major application and is expected to be ubiquitous in the near future. However, the delivery and decoding of high-resolution $360^{\circ}$ videos in desirable quality is a challenging task due to network limitations and constraints on available end device decoding and processing. In this paper, we focus on aspects of $360^{\circ}$ video streaming and provide an overview and discussion of possible solutions as well as considerations for future VR video streaming applications. This paper mainly focuses on the status of the standardization activities, Omnidirectional MediA Format (OMAF), to support interoperable $360^{\circ}$ video streaming services. More concretely, MPEG's ongoing work for OMA aims at harmonization of VR video platforms and applications. The paper also discusses the integration in MPEG Dynamic Adaptive Streaming over HTTP (MPEG-DASH), which is considered as $360^{\circ}$ video streaming services with OMAF content. In context of the general OMAF service architecture.

A Study on Optimized Mapping Environment for Real-time Spatial Mapping of HoloLens

  • Hwang, Leehwan;Lee, Jaehyun;Hafeez, Jahanzeb;Kang, Jinwook;Lee, Seunghyun;Kwon, Soonchul
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.9 no.3
    • /
    • pp.1-8
    • /
    • 2017
  • Recently, the development of the head mounted display (HMD) device has attracted a great deal of attention to the actual contents. Especially, Augmented Reality (AR), which is a mixture of actual information and virtual world information, is focused on. AR HMD is able to interact by arranging virtual objects in real space through spatial recognition using depth camera. In order to naturally mix virtual space with real space, it is necessary to develop a technology for realizing spatial mapping information with high accuracy. The purpose of this paper is to evaluate the optimal configuration of augmented reality application program by realizing accurate spatial mapping information when mapping a real space and an object placement environment using HoloLens. To do this, we changed the spatial mapping information in real space to three levels, which are the number of meshes used in cubic meters to scan step by step. After that, it was compared with the 3D model obtained by changing the actual space and mesh number. Experimental result shows that the higher the number of meshes used in cubic meters, the higher the accuracy between real space and spatial mapping. This paper is expected to be applied to augmented reality application programs that require scanning of highly mapped spatial mapping information.