• 제목/요약/키워드: Head wave

검색결과 273건 처리시간 0.028초

선미트롤어선의 운항 형태에 따른 거동 특성 (Characteristics on the response of the stern trawler according to the state of its operation)

  • 박치완;김종화;김형석;강일권
    • 수산해양기술연구
    • /
    • 제52권4호
    • /
    • pp.339-346
    • /
    • 2016
  • The aim of this research was to the experimental data using statistical and spectral analyzing method to get the motion reponses of a stern trawler in operation states such as drifting, sailing and trawling according to the wave height. In drifting, the significant and the maximum valuer of roll in beam sea increased according to the wave height, but those of pitch decreased. The response and the period of peak of roll in beam sea were increased, but those of pitch decreased. In navigation, the significant and maximum values of roll increased remarkably according to the wave height, but those of pitch changed a little. The response of roll was highest in quartering sea, beam sea and then following sea, but those of pitch was highest in bow sea, head sea and then beam sea in the order of all wave heights. The period of peak of roll due to the wave height and the wave direction changed from 3.8 to 9.9 seconds, and those of pitch changed from 3.3 to 10.4 seconds. In trawling, the significant and maximum values of roll increased a little according to the wave height, but those of pitch increased significantly. The response of roll was highest in beam sea, bow sea and then quartering sea, but those of pitch was highest in head sea, following sea, and then beam sea in the order. The period of peak of roll due to the wave height and the direction changed from 6.6 to 10.9 seconds, and those of pitch changed from 6.7 to 11.2 seconds.

Development of Two-Dimensional Scanning Videokymography for Analysis of Vocal Fold Vibration

  • Wang, Soo-Geun;Lee, Byung-Joo;Lee, Jin-Choon;Lim, Yun-Sung;Park, Young Min;Park, Hee-June;Roh, Jung-Hoon;Jeon, Gye-Rok;Kwon, Soon-Bok;Shin, Bum-Joo
    • 대한후두음성언어의학회지
    • /
    • 제24권2호
    • /
    • pp.107-111
    • /
    • 2013
  • Objectives : We developed two-dimensional (2D) scanning videokyomography to evaluate the mucosal wave of whole vocal cords in real time to overcome the limit of preexisting stroboscopy and line scanning videokymography which could not evaluate it. Methods : We implemented a continuous light source with high brightness, a high-definition CMOS camera, and capture board for saving the data. We created the software program to analyze the image data from the system. The test of the functionality of the 2D scanning videokymography camera was performed in one of the authors (P.H.J 32 years old male). Vocal cord images were obtained during normal phonation and falsetto phonation. Images were obtained also during cough, diplophonia. Results : The system made it possible to measure objective parameters, including fundamental frequency, amplitude, regularity, mucosal wave, and phase difference, medial and lateral peak, opening versus closing duration related to vocal fold vibration. Simultaneously, it enabled analysis of the whole mucosal wave of the entire vocal fold in real time. 2D scanning videokymography was also effective for evaluating the dynamic status of the vocal fold when the subject phonated aperiodic voice. Conclusion : In conclusion, 2D scanning videokymography can support the analysis of the whole mucosal wave of the entire vocal cord with objective vocal parameters, overcoming the limitations of stroboscopy and previous line scanning videokymography techniques.

  • PDF

FDTD를 이용한 인체 두부모델의 SAR 분포특성 해석 (Analysis of SAR Distribution Characteristics in a Head Model using FDTD)

  • 홍동욱;김두현;강동규
    • 한국안전학회지
    • /
    • 제19권2호
    • /
    • pp.34-40
    • /
    • 2004
  • This paper presents an analysis of SAR(Specific Absorption Rate) distribution characteristics in a head model using FDTD(Finite Difference Time Domain). In this study human head was modelled in four elements-layered structure, consisting of skin, fat, skull and brain. To calculate the electromagnetic fields wihtin the head model, FDTD method was used. In the FDTD method, the electromagnetic wave is analyzed by solving a Maxwell's equations repeatedly. For the calculation, distance between power source and head model increased by 10[m]. Power density and incident electric field intensity were calculated. Based on the incident electric field, the program which calaculated internal electric fields intensity and SAR calculation of the head model were developed. The results of developed program using FDTD were compared with those of a commericial programs, which showed the availability and usefulness of the suggested scheme in this paper.

입사파의 방향성효과에 의한 방파제 제두부의 안정성에 관한 실험적 연구 (An Experimental Study on the Stability of Breakwater Head by the Wave Directional Effects)

  • 손병규;김홍진;류청로
    • 한국수산과학회지
    • /
    • 제34권6호
    • /
    • pp.713-719
    • /
    • 2001
  • 본 연구에서는 입사파의 방향성효과에 의한 방파제 제두부의 파괴모드 중 파력에 의한 사면상의 피복석 (블럭)의 파괴와 기초부 세굴에 의한 파괴의 특성을 시$\cdot$공간적으로 해석하였다. 본 연 구의 각 단계별로 얻어진 중요한 결과를 정리하면 아래와 같다. 안정성에 미치는 외력인자로서 생각되는 surf similarity parameter ${\xi}_{1/3}$와 상대파고 $H_{1/3}/h_t$,를 변화시켜 방파제 제두부에서 얻어진 파괴율 $1\%$ 이하의 초기파괴한계와 $N_{s1/3}-{\xi}_{1/3}$의 초기파괴한계로부터 직각 입사하는 경우가 피해를 많이 받는 전형적인 결과를 얻었다. 사면상의 쇄파는 제두부의 안정성에 가장 큰 영향을 주었으며, 쇄파는 유속장과 더불어 제두부 중앙부 사면상의 피복석을 파괴하는 주된 외력인자인 것으로 확인되었다. 제두부의 파괴을은 전면영역에서 중복파영역의 영향을 많이 받고, 배후면에서 파고의 영향을 많이 받았다. 기초부 세굴에 의한 파괴는 장시간의 정상흐름에 의해 일어났다. 기초부 세굴은 파랑에 의해 발달된 전면의정상파 영역의 수평류가 강한 절점 부근과 제두부에서 발생하는 정상와동류의 흐름이 강한 곳에서 발달하였다 이는 입사방향에 따라 변하며, 정상와동류의 세굴이 구조물을 연행하여 일어나는 것을 세굴깊이의 시간적 변동특성으로부터 알 수 있었다.

  • PDF

가공전선로의 전자파에 대한 가공지선의 효과 (Effects of Over-head earth line for electromagnetic wave from over-head Power lines)

  • 강대하;조용호;이영식;정재훈;김희철
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2008년도 제39회 하계학술대회
    • /
    • pp.1428-1429
    • /
    • 2008
  • In this study the formula of electromagnetic field s by dipole antenna theory were applied to 3 phase power lines and effect of over-head earth lines was calculated and analyzed.

  • PDF

A Study on the Propulsion Performance of KCS in Still Water and Regular Wave

  • Lee, Sang-Min;Jeong, Uh-Cheul;Kim, Dae-Hae
    • 한국항해항만학회지
    • /
    • 제37권1호
    • /
    • pp.63-69
    • /
    • 2013
  • Since most merchant vessels are mainly influenced by the added resistance in an actual sea, they could be navigated more efficiently if this added resistance could be precisely predicted and then effectively reduced. In this paper, we have computed the effective horsepower based on the resistance performance in still water and then calculated the added resistance in regular wave in order to estimate a ship's propulsion performance on a voyage. Firstly, we have performed experiments using a model of KCS in a circulating water channel to estimate the flow characteristics around a container ship and the ship's resistance in still water. Then we have calculated the motion response function in regular wave as well as the values for the increase in resistance, and evaluated the ship's motion performance in waves according to the calculated response function. It was found that the resistance in waves increased because the ship's motion response value became larger as the ship's speed increased in the case of head sea. The effect of the added resistance could be reduced by maneuvering the ship to the encounter angle of $120^{\circ}$ in areas of long wavelengths and to head sea in areas of short wavelengths.

반도체/디스플레이 소자용 초음파 건식세정 시뮬레이션 연구 (Simulation of Ultrasonic Dry Cleaning for Semiconductor/display Device Application)

  • 윤의중;이강원;김철호;이석태
    • 한국전기전자재료학회논문지
    • /
    • 제17권12호
    • /
    • pp.1259-1263
    • /
    • 2004
  • In this paper, the optimum design of ultrasonic dry cleaning head was investigated. The transducer instead of mechanical dynamic structure was used to generate ultrasonic wave and the horn-shape amplifier was utilized to solve the energy decaying problem of ultrasonic wave with propagating it through the media. The analyses of ultrasonic wave and a fluid for the selected structure of a cleaning head were carried out using SYSNOISE and ANSYS simulators, respectively. Based on simulator results, the distance between a horn and the substrate of 4 mm and the horn diameter of 10 mm were determined to maximize the energy of ultrasonic waves. The cooling structure was also considered to reduce the heat from the transducer and the horn. The equivalent circuit for the fabricated horn was deduced from HP4194A impedance/gain/phase analyzer and the frequency of an ultrasonic wave of 20.25 kHz was confirmed using the parameters of the equivalent circuit.

Experimental study on the asymmetric impact loads and hydroelastic responses of a very large container ship

  • Lin, Yuan;Ma, Ning;Gu, Xiechong;Wang, Deyu
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제12권1호
    • /
    • pp.226-240
    • /
    • 2020
  • This paper presents an experimental investigation of asymmetric impact effects on hydroelastic responses. A 1:64 scaled segmented ship model with U-shape open cross-section backbone was newly designed to meet elastic similarity conditions of vertical, horizontal and torsional stiffness simultaneously. Different wave heading angles and wavelengths were adopted in regular wave test. In head wave condition, parametric rolling phenomena happened along with asymmetric slamming forces, the relationship between them was disclosed at first time. The impact forces on starboard and port sides showed alternating asymmetric periodic changes. In oblique wave condition, nonlinear springing and whipping responses were found. Since slamming phenomena occurred, high-frequency bending moments became an important part in total bending moments and whipping responses were found in small wavelength. The wavelength and head angle are varied to elucidate the relationship of springing/whipping loads and asymmetric impact. The distributions of peaks of horizontal and torsional loads show highly asymmetric property.

Dynamic response of free-end rod with consideration of wave frequency

  • Kim, Sang Yeob;Lee, Jong-Sub;Tutumluer, Erol;Byun, Yong-Hoon
    • Geomechanics and Engineering
    • /
    • 제28권1호
    • /
    • pp.25-33
    • /
    • 2022
  • The energy transferred on drill rods by dynamic impact mainly determines the penetration depth for in-situ tests. In this study, the dynamic response and transferred energy of drill rods are determined from the frequency of the stress waves. AW-type drill rods of lengths 1 to 3 m are prepared, and strain gauges and an accelerometer are installed at the head and tip of the connected rods. The drill rods are hung on strings, allowing free vibration, and then impacted by a pendulum hammer with fixed potential energy. Increasing the rod length L increases the wave roundtrip time (2L/c, where c is the wave velocity), and hence the transferred energy at the rod head. At the rod tip, the first velocity peak is higher than the first force peak because a large and tensile stress wave is reflected, and the transferred energy converges to zero. The resonant frequency increases with rod length in the waveforms measured by the strain gauges, and fluctuates in the waveforms measured by the accelerometer. In addition, the dynamic response and transferred energy are perturbed when the cutoff frequency is lower than 2 kHz. This study implies that the resonant frequency should be considered for the interpretation of transferred energy on drill rods.

전자파 흡수율(SAR) 시뮬레이션 기법과 5G 주파수 대역에서의 인공 치아가 삽입된 인체 머리 모델의 전자파 흡수율 시뮬레이션 결과 (Simulation Methods of Electromagnetic Wave Specific Absorption Rate (SAR) and the Simulation Results of Human Head Model with Dental Implants in 5G Frequency Band)

  • 김창균;이성수
    • 전기전자학회논문지
    • /
    • 제22권3호
    • /
    • pp.854-857
    • /
    • 2018
  • 다양한 무선기기가 일상화됨에 따라 전자파가 인체에 미치는 영향에 대해 분석할 필요성이 증가하고 있다. 전자파가 인체에 미치는 영향을 나타내는 파라미터가 전자파 흡수율(SAR: specific absorption rate)인데, 이는 단순히 인체 조직만 대상으로 하고 있어 인공 치아 등의 금속 인공물이 삽입된 경우에는 전자파가 미치는 영향을 평가하기가 쉽지 않다. 본 논문에서는 SAR을 시뮬레이션하기 위한 방법을 소개하고 실제로 SAR을 시뮬레이션 하였다. 30 GHz 5세대 이동통신(5G) 주파수 대역에서 인공 치아가 삽입된 인체 머리 모델의 SAR은 최고치 $2.50{\times}10^{-3}W/kg$, 평균치 $8.58{\times}10^{-7}W/kg$으로 국내 허용 기준치 1.6 W/kg에 절대적으로 못 미침을 알 수 있다.