• Title/Summary/Keyword: Head method

Search Result 3,052, Processing Time 0.028 seconds

Environmental Interpretation on soil mass movement spot and disaster dangerous site for precautionary measures -in Peong Chang Area- (산사태발생지(山沙汰發生地)와 피해위험지(被害危險地)의 환경학적(環境學的) 해석(解析)과 예방대책(豫防對策) -평창지구(平昌地區)를 중심(中心)으로-)

  • Ma, Sang Kyu
    • Journal of Korean Society of Forest Science
    • /
    • v.45 no.1
    • /
    • pp.11-25
    • /
    • 1979
  • There was much mass movement at many different mountain side of Peong Chang area in Kwangwon province by the influence of heavy rainfall through August/4 5, 1979. This study have done with the fact observed through the field survey and the information of the former researchers. The results are as follows; 1. Heavy rainfall area with more than 200mm per day and more than 60mm per hour as maximum rainfall during past 6 years, are distributed in the western side of the connecting line through Hoeng Seong, Weonju, Yeongdong, Muju, Namweon and Suncheon, and of the southern sea side of KeongsangNam-do. The heavy rain fan reason in the above area seems to be influenced by the mouktam range and moving direction of depression. 2. Peak point of heavy rainfall distribution always happen during the night time and seems to cause directly mass movement and serious damage. 3. Soil mass movement in Peongchang break out from the course sandy loam soil of granite group and the clay soil of lime stone and shale. Earth have moved along the surface of both bedrock or also the hardpan in case of the lime stone area. 4. Infiltration seems to be rapid on the both bedrock soil, the former is by the soil texture and the latter is by the crumb structure, high humus content and dense root system in surface soil. 5. Topographic pattern of mass movement spot is mostly the concave slope at the valley head or at the upper part of middle slope which run-off can easily come together from the surrounding slope. Soil profile of mass movement spot has wet soil in the lime stone area and loose or deep soil in the granite area. 6. Dominant slope degree of the soil mass movement site has steep slope, mostly, more than 25 degree and slope position that start mass movement is mostly in the range of the middle slope line to ridge line. 7. Vegetation status of soil mass movement area are mostly fire field agriculture area, it's abandoned grass land, young plantation made on the fire field poor forest of the erosion control site and non forest land composed mainly grass and shrubs. Very rare earth sliding can be found in the big tree stands but mostly from the thin soil site on the un-weatherd bed rock. 8. Dangerous condition of soil mass movement and land sliding seems to be estimated by the several environmental factors, namely, vegetation cover, slope degree, slope shape and position, bed rock and soil profile characteristics etc. 9. House break down are mostly happen on the following site, namely, colluvial cone and fan, talus, foot area of concave slope and small terrace or colluvial soil between valley and at the small river side Dangerous house from mass movement could be interpreted by the aerial photo with reference of the surrounding site condition of house and village in the mountain area 10. As a counter plan for the prevention of mass movement damage the technics of it's risk diagnosis and the field survey should be done, and the mass movement control of prevention should be started with the goverment support as soon as possible. The precautionary measures of house and village protection from mass movement damage should be made and executed and considered the protecting forest making around the house and village. 11. Dangerous or safety of house and village from mass movement and flood damage will be indentified and informed to the village people of mountain area through the forest extension work. 12. Clear cutting activity on the steep granite site, fire field making on the steep slope, house or village construction on the dangerous site and fuel collection in the eroded forest or the steep forest land should be surely prohibited When making the management plan the mass movement, soil erosion and flood problem will be concidered and also included the prevention method of disaster.

  • PDF

Studies on the growth duration and hybrid sterility in remote cross breeding of cultivated rice (수도원연품종간잡종에 있어서의 생육일수와 불임에 관한 연구)

  • Mun-Hue Heu
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.4 no.1
    • /
    • pp.31-71
    • /
    • 1968
  • To clarify the breeding behavior of the hybrids between tropical and temperate area rice varieties, investigations were made on heading days and grain sterility. In this study, crosses were made in half way diallel involving 7 varieties: 2 photoperied sensitive Indicas, 2 less sensitive intermediate Indicas, 1 Ponlai Japonica and 2 high temperature sensitive Japonicas. The parents and $F_1$s were grown under 10 hours and 14 hours daylength controlled conditions at both IRRI(International Rice Research Institute, N$14^{\circ}$17') and Suwon(N$37^{\circ}$16'). F2s with their parents were grown at IRRI in the short day season, and at Suwon under natural conditions. Fa lines with their parents were grown at Suwon under natural conditions. Observations were made for heading days and sterility. The results are summarized as follow; 1. Heading days : 1. For the $F_1$s, earliness showed dominance or overdominance to lateness under the 10 hours condition, and dominance or partial dominance under the 14 hours conditions, at both IRRI and Suwon. 2. For the $F_2$s grown at IRRI during the shortday season earliness appeared to be dominant over lateness and segregation was not distinct and continuous. In the early season culture of $F_2$s at Suwon earliness showed partial dominance or was intermediate. In the proper season culture of $F_2$s lateness showed partial dominance or was intermediate. 3. In the combinations between late parental varieties which do not head at Suwon, transgressive segregants bearing effective panicles were obtained. 4. The crosses of parental varieties having long basic vegetative growth duration showed bigger variance in heading days, and significant correlation was found between of parental varieties and the mean coefficient of variance for parental arrays. 5. The means of heading days of F2 populations were significantly correlated with those of $F_1$ or mid-parents. The means of F 8 lines were also highly correlated with the means of $F_2$s, but, the means of $F_3$ lines grown at Suwon and of their parental $F_2$ individual, grown at IRRI were not correlated. 6. A faint heritability was calculated from the regression of $F_3$ lines grown at Suwon on the $F_2$ individuals grown at IRRI for most combinations, especially in the combinations involving shortday sensitive varieties. This implies low efficiency for the selection of heading days of $F_2$ individuals at IRRI to be grown in lines at Suwon. 7. No significant reciprocal effects were measured for $F_1$ and $F_2$ mean heading days. 8. Partitioning the observed photoperiod sensitivity. into two components, parental array mean md the deviation from this array mean, the parental photoperiod sensitivity contributing to the hybrids was measured in terms of general and specific combining ability for photoperiod sensitivity. 9. The photoperiod sensitivity of $F_1$s was higher than that of the parents, and it decreased as the generation progressed in most combinations of tested varieties. 10. The response of heading days to difference of temperature was weaker for $F_1$ hybrids than for the parents. The differences of temperature responses between the longday and shortday treatments were specific for the variety. 2. Sterility : 1. The $F_1$ sterility was specific for the combinations and not correlated to the parental sterility. The sterility of $F_1$s grown under the 10 hours condition was higher than of those grown under 14 hours. These results were the same at both locations, IRRI and Suwon. 2. The high sterile combinations in $F_1$ showed high sterility in $F_2$. The combinations between a high photoperiod sensitive variety and a high temperature sensitive variety showed high sterility and wider variance. 3. The mean sterility of $F_2$s was lower than of $F_1$s and the mean of $F_3$ lines was lower than of $F_2$s. Sterility decreased as the generation progressed, and the differences of $F_3$ sterility of different combinations were not significant. 4. A faint correlation between grain sterility and pollen sterility was observed in $F_2$ populations. 5. No significant reciprocal effects were measured in $F_1$ and $F_2$ sterility. 6. Following Griffing's method, specific combining ability effects were higher than general combining ability effects, especially in the combinations between highly photoperiod sensitive varieties and highly temperature sensitive varieties. 7. No distinct correlations were found between $F_2$ individual sterility grown at IRRI and $F_3$ line sterility grown at Suwon. 8. No distinct correlations were observed between heading days and sterility of $F_2$ individuals.

  • PDF