• Title/Summary/Keyword: Head impact performance

Search Result 89, Processing Time 0.024 seconds

Relationship of Test Methods of Impact Absorbing Effect of Floors from a viewpoint of Safety in Accidental Collisions (인체충돌시 바닥의 안전성에 관한 시험방법간 연관성 분석)

  • Kim, Sang-Heon;Ji, Suk-Won;Yoon, Jung-Sik;Choi, Soo-Kyug;Seo, Chee-Ho
    • Journal of the Korea Institute of Building Construction
    • /
    • v.11 no.1
    • /
    • pp.29-34
    • /
    • 2011
  • Since the study of building performance design was first undertaken by Building Research Station in 1930s, the results of such study has been reported from many parts of the world, building construction codes and standards have been revised based on performance in advanced nations as well in Korea, and various performance certification systems are in operation. The purpose of this study is to build a database of performance certification systems to investigate the co-relationship of various test methods related to the same test items. As test methods for case study, we selected test methods involving collision of the human body. Through analysis of Critical fall height test of EN 1177 and Head Model test of JIS A 6519 about 8 species of floor test-bodies, it was found that there are limits of application in terms of the depth and strength of cushion. Furthermore, although the measured physical parameters are the same, when the co-relationship between test methods is uncertain, the various physical parameters may not be compatible with the results.

CFD Analysis on the Performance and Internal Flow of a Micro Cross-Flow Hydro Turbine in the Range of Very Low Specific Speed (극저비속도 영역 마이크로 횡류수차의 성능 및 내부유동 수치해석적 연구)

  • Choi, Young-Do;Son, Sung-Woo
    • The KSFM Journal of Fluid Machinery
    • /
    • v.15 no.6
    • /
    • pp.25-30
    • /
    • 2012
  • Renewable energy has been interested because of fluctuation of oil price, depletion of fossil fuel resources and environmental impact. Amongst renewable energy resources, hydropower is most reliable and cost effective way. In this study, to develop a new type of micro hydro turbine which can be operated in the range of very low specific speed, a cross-flow hydro turbine with simple structure is proposed. The turbine is designed to be used at the very low specific speed range of hydropower resources, such as very high-head and considerably small-flow rate water resources. CFD analysis on the performance and internal flow characteristics of the turbine is conducted to obtain a practical data for the new design method of the turbine. Results show that optimized arrangement of guide vane angle and inner guide angle can give contribution to the turbine performance improvement.

Heterogeneity-aware Energy-efficient Clustering (HEC) Technique for WSNs

  • Sharma, Sukhwinder;Bansal, Rakesh Kumar;Bansal, Savina
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.4
    • /
    • pp.1866-1888
    • /
    • 2017
  • Efficient energy consumption in WSN is one of the key design issues for improving network stability period. In this paper, we propose a new Heterogeneity-aware Energy-efficient Clustering (HEC) technique which considers two types of heterogeneity - network lifetime and of sensor nodes. Selection of cluster head nodes is done based on the three network lifetime phases: only advanced nodes are allowed to become cluster heads in the initial phase; in the second active phase all nodes are allowed to participate in cluster head selection process with equal probability, and in the last dying out phase, clustering is relaxed by allowing direct transmission. Simulation-based performance analysis of the proposed technique as compared to other relevant techniques shows that HEC achieves longer stable region, improved throughput, and better energy dissipation owing to judicious consumption of additional energy of advanced nodes. On an average, the improvement observed for stability period over LEACH, SEP, FAIR and HEC- with SEP protocols is around 65%, 30%, 15% and 17% respectively. Further, the scalability of proposed technique is tested by varying the field size and number of sensing nodes. The results obtained are found to be quite optimistic. The impact of energy heterogeneity has also been assessed and it is found to improve the stability period though only upto a certain extent.

A Study on Improvement of Ballistic Testing Method for Combat Helmet (방탄헬멧의 방탄시험방법 개선에 관한 연구)

  • Gu, Seung Hwan;Kim, Kyung Min;Park, Jung Hwa;Song, Seung Hwan
    • Journal of Korean Society for Quality Management
    • /
    • v.47 no.2
    • /
    • pp.283-294
    • /
    • 2019
  • Purpose: Although the development of bulletproof helmets continues to be carried out, little has been improved in testing methods. Therefore, in this study, we studied the improvement of the test method of the domestic bulletproof helmet. Methods: The causes of head damage in the battlefield and the trends of bulletproof helmet development in developed countries were analyzed. In addition, improvements were derived by comparing the test methods of bulletproof helmet in Korea and the United States. Results: The results of the improvement by comparing the test methods of bulletproof helmet in Korea and the United States are as follows First, it is an addition to the scope of environmental treatment. Second, it is an addition to the level of protection. Third, the addition of the level of protection by impact. Conclusion: This study considered testing methods to prevent head injuries to shocks that cannot be identified by conventional methods. In addition, it considered testing methods for various threats by improving protection performance to advanced countries' levels.

Analysis of Performance of Cross-Flow Fan with Various Rear Guiders (리어가이더 형상변화에 따른 횡류홴 성능해석)

  • Kim, Dong-Won;Lee, Jun-Hwan;Park, Seong-Gwan;Kim, Yun-Je
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.2076-2082
    • /
    • 2003
  • A cross-flow fan is widely used on many industrial fields: mining industry, automobile and home appliances, etc. The design point of the cross-flow fan is generally based on the region within low static pressure and high flow rate. It relatively makes high dynamic pressure at low speed because a working fluid passes through an impeller blade twice. However, it has low static pressure efficiency between 30% and 40% because of relative high impact loss. Recently, in the air-conditioning systems, the operating behaviors at the off-design points are highly regarded to broaden the application area for various air-cooling loads. Especially, at the lower flow rate, there exists a rapid pressure head reduction, a noise increase and an irregular flow field against a rearguider as a scroll of centrifugal fan. Numerical analyses are carried out for investigating the flow characteristics in a cross-flow fan including the impeller, the rearguider and the stabilizer. Especially, various types of rearguiders are estimated by numerical and experimental methods to insure the stable operation in the region of lower flow rate. Numerical domains are discretized by hexahedral cells. Three-dimensional, unsteady governing equations are solved using FVM, PISO algorithm, sliding grid system and standard ${\kappa}-{\varepsilon}$ turbulence model. ASHRAE standard fan tester is also used to estimate the performance of the modeled crossflow fan.

  • PDF

An Augmented Reality System for the Construction Industry and Its Impact on Workers' Situational Awareness

  • Abbas, Ali;Seo, JoonOh;Kim, MinKoo
    • International conference on construction engineering and project management
    • /
    • 2020.12a
    • /
    • pp.129-136
    • /
    • 2020
  • Augmented reality (AR) technology assists construction workers by superimposing additional virtual information onto their real worksite environments. Ideally, this provides them with a better understanding of their tasks and hence boosts task performance. However, the additional information that AR places in users' field of view could limit their ability to understand what is going on in their surroundings and to predict how conditions may change in the near future. AR-assisted systems on construction sites could therefore expose their users to safety risks due to disturbance from the system. Hence, it is important to understand how AR-assisted systems can block users' understanding of their immediate environments, and in turn, how worksite safety in the construction industry could be improved through better design of such systems. This preliminary research conducted a laboratory experiment that simulated rebar inspection tasks and compared the situational awareness of AR users against that of subjects using traditional paper-based inspection methods, as measured by the Situation Awareness Rating Technique. Based on the results, we discuss the safety impact of head-mounted AR-assisted displays on situational awareness during construction tasks.

  • PDF

The Performance Characteristics of Anti-Surge Devices for High Head Cooling Water Systems in 1,000 MW Thermal Power plants (고수두 1,000 MW 석탄화력발전소 냉각수계통 수격방지장치의 성능특성)

  • Kim, Keun-Pil;Yoo, Hoseon
    • Plant Journal
    • /
    • v.15 no.4
    • /
    • pp.36-42
    • /
    • 2019
  • In recent, according to the tightening of environment regulation policy, the height of the site of the power plant is increased and the length of the cooling water pipe is increased. This has a serious impact on the stability of the plant. This study analyzes the transient phenomenon using LIQT 7.2, an unsteady state one-dimensional analysis software, to secure the stability of 1,000 MW high-capacity coal-fired power plant cooling water system with high head. To prevent water hammer, The effects on performance characteristics were predicted by individual and combination application. The surge pressure of the cooling water which occurs when the pump was stopped without installing the anti-surge devices was the largest at the pump outlet side. The most effective and simple way to reduce surge pressure in these cooling water systems is to combine a vacuum breaker with a hydraulic non-return valve, which is an essential device for pump protection.

The cavitating flow simulation in cryogenic fluid around 3D objects

  • Thai, Quangnha;Lee, Chang-Jin
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2010.05a
    • /
    • pp.264-267
    • /
    • 2010
  • This research focuses on the development of numerical code to deal with compressible two phase flow around three dimensional objects combined with cavitation model suggested by Weishyy et al. with k-e turbulent model. The cryogenic cavitation is carried out by considering the thermodynamic effect on physical properties of cryogenic fluids in physical point of view and implementing the temperature sensitivity in the energy equation of the government equations in numerical point of view, respectively. The formulation has been extensively validated for both liquid nitrogen and liquid hydrogen by simulating the experiments of Hord on hydrofoils. Then, simulations of cavitating turbopump inducers at their design flow rate are presented. Results over a broad range of Nss numbers extending from single-phase flow conditions through the critical head break down point are discussed. In particular, thermal depression effects arising from cavitation in cryogenic fluids are identified and their impact on the suction performance of the inducer quantified.

  • PDF

Performance Estimation of Cross-Flow Fan by Numerical Method (수치해석적 기법을 이용한 횡류홴 성능 평가)

  • Kim, D.-W.;Lee, J.-H.;Park, S.-K.;Kim, Youn-J.
    • 유체기계공업학회:학술대회논문집
    • /
    • 2002.12a
    • /
    • pp.152-157
    • /
    • 2002
  • A cross-flow fan is widely used on many industrial fields: a blower for the general industry, mining industry, automobile and home appliances. The design point of the cross-flow fan is generally chosen by based on the region within low static pressure and high flow rate. It relatively makes high dynamic pressure at low speed because a working fluid passes through an impeller blade twice. However, it has low static pressure efficiency between $30\%$ and $40\%$ because of relative high impact loss. Recently, in the air-conditioning systems, the operating behaviors at the off-design points are highly regarded to broaden the application area for various air-cooling loads. Especially, at the low flow rate, there exists a rapid pressure head reduction, a noise increase and an irregular flow against a rearguider as a scroll of centrifugal fan. Numerical analyses are carried out for cross-flow fan including the impeller, the rearguider and the stabilizer. Numerical domains are discretized by hexahedral cells. Three-dimensional, unsteady governing equations are solved using FVM, SIMPLE algorithm, sliding grid system and standard k-$\epsilon$ turbulence model.

  • PDF

The Effects of Accuracy on Skill Level and Eye-Tracking Type in Golf Putting (숙련도와 시선형태가 골프퍼팅의 정확성에 미치는 영향)

  • Woo, Byung-Hoon;Kim, Chang-Won;Park, Yang-Sun;Lee, Kun-Chun;Lim, Young-Tae
    • Korean Journal of Applied Biomechanics
    • /
    • v.19 no.4
    • /
    • pp.729-738
    • /
    • 2009
  • The purpose of this study was to analyze the impact accuracy and kinematic parameters of skill level and eye-tracking type during putting strokes. For comparison, five elite golfers and five novice golfers participated in this study. Three-dimensional kinematic data were collected for each subject while 10 putting trials were performed for each skill level and eye-tracking type. The APAS system was used to compute the impact accuracy and kinematic parameters of putter heads. The putting stroke was divided into three phases: back swing, downswing, and follow-through. The findings indicated that significant differences were found in skill level as it affected the rate of success. For impact accuracy and the displacement of putter heads, a significant difference was found for the skill level, particularly in backs-wing and follow-through. In addition, the displacement of the putter head had a greater influence on stroke accuracy than on velocity.