• Title/Summary/Keyword: Head Pose

Search Result 93, Processing Time 0.025 seconds

Development of a Cost-Effective Tele-Robot System Delivering Speaker's Affirmative and Negative Intentions (화자의 긍정·부정 의도를 전달하는 실용적 텔레프레즌스 로봇 시스템의 개발)

  • Jin, Yong-Kyu;You, Su-Jeong;Cho, Hye-Kyung
    • The Journal of Korea Robotics Society
    • /
    • v.10 no.3
    • /
    • pp.171-177
    • /
    • 2015
  • A telerobot offers a more engaging and enjoyable interaction with people at a distance by communicating via audio, video, expressive gestures, body pose and proxemics. To provide its potential benefits at a reasonable cost, this paper presents a telepresence robot system for video communication which can deliver speaker's head motion through its display stanchion. Head gestures such as nodding and head-shaking can give crucial information during conversation. We also can assume a speaker's eye-gaze, which is known as one of the key non-verbal signals for interaction, from his/her head pose. In order to develop an efficient head tracking method, a 3D cylinder-like head model is employed and the Harris corner detector is combined with the Lucas-Kanade optical flow that is known to be suitable for extracting 3D motion information of the model. Especially, a skin color-based face detection algorithm is proposed to achieve robust performance upon variant directions while maintaining reasonable computational cost. The performance of the proposed head tracking algorithm is verified through the experiments using BU's standard data sets. A design of robot platform is also described as well as the design of supporting systems such as video transmission and robot control interfaces.

Automatic 3D Head Pose-Normalization using 2D and 3D Interaction (자동 3차원 얼굴 포즈 정규화 기법)

  • Yu, Sun-Jin;Kim, Joong-Rock;Lee, Sang-Youn
    • Proceedings of the IEEK Conference
    • /
    • 2007.07a
    • /
    • pp.211-212
    • /
    • 2007
  • Pose-variation factors present a significant problem in 2D face recognition. To solve this problem, there are various approaches for a 3D face acquisition system which was able to generate multi-view images. However, this created another pose estimation problem in terms of normalizing the 3D face data. This paper presents a 3D head pose-normalization method using 2D and 3D interaction. The proposed method uses 2D information with the AAM(Active Appearance Model) and 3D information with a 3D normal vector. In order to verify the performance of the proposed method, we designed an experiment using 2.5D face recognition. Experimental results showed that the proposed method is robust against pose variation.

  • PDF

Robust Head Pose Estimation for Masked Face Image via Data Augmentation (데이터 증강을 통한 마스크 착용 얼굴 이미지에 강인한 얼굴 자세추정)

  • Kyeongtak, Han;Sungeun, Hong
    • Journal of Broadcast Engineering
    • /
    • v.27 no.6
    • /
    • pp.944-947
    • /
    • 2022
  • Due to the coronavirus pandemic, the wearing of a mask has been increasing worldwide; thus, the importance of image analysis on masked face images has become essential. Although head pose estimation can be applied to various face-related applications including driver attention, face frontalization, and gaze detection, few studies have been conducted to address the performance degradation caused by masked faces. This study proposes a new data augmentation that synthesizes the masked face, depending on the face image size and poses, which shows robust performance on BIWI benchmark dataset regardless of mask-wearing. Since the proposed scheme is not limited to the specific model, it can be utilized in various head pose estimation models.

Pose-normalized 3D Face Modeling for Face Recognition

  • Yu, Sun-Jin;Lee, Sang-Youn
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.35 no.12C
    • /
    • pp.984-994
    • /
    • 2010
  • Pose variation is a critical problem in face recognition. Three-dimensional(3D) face recognition techniques have been proposed, as 3D data contains depth information that may allow problems of pose variation to be handled more effectively than with 2D face recognition methods. This paper proposes a pose-normalized 3D face modeling method that translates and rotates any pose angle to a frontal pose using a plane fitting method by Singular Value Decomposition(SVD). First, we reconstruct 3D face data with stereo vision method. Second, nose peak point is estimated by depth information and then the angle of pose is estimated by a facial plane fitting algorithm using four facial features. Next, using the estimated pose angle, the 3D face is translated and rotated to a frontal pose. To demonstrate the effectiveness of the proposed method, we designed 2D and 3D face recognition experiments. The experimental results show that the performance of the normalized 3D face recognition method is superior to that of an un-normalized 3D face recognition method for overcoming the problems of pose variation.

Estimation of a Gaze Point in 3D Coordinates using Human Head Pose (휴먼 헤드포즈 정보를 이용한 3차원 공간 내 응시점 추정)

  • Shin, Chae-Rim;Yun, Sang-Seok
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2021.10a
    • /
    • pp.177-179
    • /
    • 2021
  • This paper proposes a method of estimating location of a target point at which an interactive robot gazes in an indoor space. RGB images are extracted from low-cost web-cams, user head pose is obtained from the face detection (Openface) module, and geometric configurations are applied to estimate the user's gaze direction in the 3D space. The coordinates of the target point at which the user stares are finally measured through the correlation between the estimated gaze direction and the plane on the table plane.

  • PDF

Head Pose Estimation Using Error Compensated Singular Value Decomposition for 3D Face Recognition (3차원 얼굴 인식을 위한 오류 보상 특이치 분해 기반 얼굴 포즈 추정)

  • 송환종;양욱일;손광훈
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.40 no.6
    • /
    • pp.31-40
    • /
    • 2003
  • Most face recognition systems are based on 2D images and applied in many applications. However, it is difficult to recognize a face when the pose varies severely. Therefore, head pose estimation is an inevitable procedure to improve recognition rate when a face is not frontal. In this paper, we propose a novel head pose estimation algorithm for 3D face recognition. Given the 3D range image of an unknown face as an input, we automatically extract facial feature points based on the face curvature. We propose an Error Compensated Singular Value Decomposition (EC-SVD) method based on the extracted facial feature points. We obtain the initial rotation angle based on the SVD method, and perform a refinement procedure to compensate for remained errors. The proposed algorithm is performed by exploiting the extracted facial features in the normaized 3D face space. In addition, we propose a 3D nearest neighbor classifier in order to select face candidates for 3D face recognition. From simulation results, we proved the efficiency and validity of the proposed algorithm.

Head Pose Estimation with Accumulated Historgram and Random Forest (누적 히스토그램과 랜덤 포레스트를 이용한 머리방향 추정)

  • Mun, Sung Hee;Lee, Chil woo
    • Smart Media Journal
    • /
    • v.5 no.1
    • /
    • pp.38-43
    • /
    • 2016
  • As smart environment is spread out in our living environments, the needs of an approach related to Human Computer Interaction(HCI) is increases. One of them is head pose estimation. it related to gaze direction estimation, since head has a close relationship to eyes by the body structure. It's a key factor in identifying person's intention or the target of interest, hence it is an essential research in HCI. In this paper, we propose an approach for head pose estimation with pre-defined several directions by random forest classifier. We use canny edge detector to extract feature of the different facial image which is obtained between input image and averaged frontal facial image for extraction of rotation information of input image. From that, we obtain the binary edge image, and make two accumulated histograms which are obtained by counting the number of pixel which has non-zero value along each of the axes. This two accumulated histograms are used to feature of the facial image. We use CAS-PEAL-R1 Dataset for training and testing to random forest classifier, and obtained 80.6% accuracy.

Probabilistic Head Tracking Based on Cascaded Condensation Filtering (순차적 파티클 필터를 이용한 다중증거기반 얼굴추적)

  • Kim, Hyun-Woo;Kee, Seok-Cheol
    • The Journal of Korea Robotics Society
    • /
    • v.5 no.3
    • /
    • pp.262-269
    • /
    • 2010
  • This paper presents a probabilistic head tracking method, mainly applicable to face recognition and human robot interaction, which can robustly track human head against various variations such as pose/scale change, illumination change, and background clutters. Compared to conventional particle filter based approaches, the proposed method can effectively track a human head by regularizing the sample space and sequentially weighting multiple visual cues, in the prediction and observation stages, respectively. Experimental results show the robustness of the proposed method, and it is worthy to be mentioned that some proposed probabilistic framework could be easily applied to other object tracking problems.

Facial Feature Tracking and Head Orientation-based Gaze Tracking

  • Ko, Jong-Gook;Kim, Kyungnam;Park, Seung-Ho;Kim, Jin-Young;Kim, Ki-Jung;Kim, Jung-Nyo
    • Proceedings of the IEEK Conference
    • /
    • 2000.07a
    • /
    • pp.11-14
    • /
    • 2000
  • In this paper, we propose a fast and practical head pose estimation scheme fur eye-head controlled human computer interface with non-constrained background. The method we propose uses complete graph matching from thresholded images and the two blocks showing the greatest similarity are selected as eyes, we also locate mouth and nostrils in turn using the eye location information and size information. The average computing time of the image(360*240) is within 0.2(sec) and we employ template matching method using angles between facial features for head pose estimation. It has been tested on several sequential facial images with different illuminating conditions and varied head poses, It returned quite a satisfactory performance in both speed and accuracy.

  • PDF