• Title/Summary/Keyword: Hazardous Substances

Search Result 521, Processing Time 0.027 seconds

Green Chemistry at the present in Korea

  • Lee, Seung-Kyu;Park, Hyeon-Soo
    • Environmental Analysis Health and Toxicology
    • /
    • v.30 no.sup
    • /
    • pp.1.1-1.5
    • /
    • 2015
  • Objectives Despite the great contribution made by chemical substances to the development of modern civilization, their indiscriminate use has caused various kinds of damage to the global environment and human beings. Accordingly, the major developed countries and international society have tried to ensure the safe use of chemicals and a reduction in the use of hazardous chemicals through the establishment of the United Nations Environment Programme and various international agreements. In this reason, we tried to introduce about Green Chemistry progress at the present in worldwide and Korea. Methods We checked and analyzed relative journals, reports using keyword as like Green Chemistry, alternative chemicals, eco-friendly etc. and major country's government homepage search. Results Green Chemistry theory, which argues for the reduction or removal of harmfulness in chemicals throughout their entire life-cycle, has been spreading, and major developed countries, such as the US and Denmark, have developed and operate programs to provide reliable chemical information to help replace hazardous chemicals. Korea has also been conducting studies as like eco-innovation project. Through this project the "Alternative Chemical Search program," has been developed, distributed, and operated since 2011 to provide reliable information to small and medium-sized businesses that have difficulties collecting information to ensure conformity to international regulations. The program provides information that includes the regulations of major countries and Korea, information on 340 alternative chemicals, 70 application cases, and 1:1 consulting. Conclusions The Alternative Chemical Search program is expected to contribute to the establishment of response systems for regulation of Korean small and medium-sized businesses, and it also will be used to provide basic data for Korean hazardous chemical regulation, together with the Act on the Registration and Evaluation, etc. of Chemical Substances and the Chemical Control act, making it possible to establish an infrastructure for Green Chemistry in Korea and to increase national competitiveness.

Economical Ventilation Effectiveness to Reduce Hazardous Chemical Emissions for a Nail-Salon Worker

  • KWON, Woo-Taeg;JUNG, Min-Jae;LEE, Woo-Sik;KWON, Lee-Seung;SO, Young-Jin
    • Journal of Distribution Science
    • /
    • v.17 no.7
    • /
    • pp.65-76
    • /
    • 2019
  • Purpose - The purpose of this study is to investigate economical ventilation effectiveness to reduce hazardous materials exposure and damage of workers by analyzing exposure amount of noxious substances under various ventilation conditions of nail salon for indoor environments. Research design, data, and methodology - This study was carried out with cooperation of Nail shop located in SeongNam city to involve an analysis of the environmental impact indoor air quality, pollutant exposure and economical cost-effectiveness in the nail workplace. The hazardous substances were PM-10(Particulate Matter-10㎛), VOCs(Volatile Organic Compounds) and Formaldehyde, which are the major materials of nail workplace. Results - PM-10 is reduced by about 60% with air cleaner, forced artificial ventilation by 32%, and natural ventilation by about 12%. TVOCs and Formaldehyde showed similar efficiency (80~100%) after natural ventilation and ventilation after 60 minutes. The removal efficiencies of VOCs and formaldehyde were similar to those of natural ventilation and mechanical ventilation system. However, in case of dust, natural ventilation was reduced by artificial ventilation system due to inflow of external dust during natural ventilation. Conclusions - If the pollution degree of outdoor air is not high, air volume is high, and natural ventilation is performed when the air conditioning and heating system is not operated. Even at the end of the work, it keeps operating for 60 minutes to remove the pollutants generated. Results of this analysis demonstrated that the worker environment can be improved by adopting institutional legislation and guidelines for ventilation.

Permeation Characteristics of Hazardous Substances in Tattoo Dye using Franz Diffusion Cells (Franz Diffusion Cell을 이용한 문신용 염료 내 유해물질의 피부 투과특성 연구)

  • Park, Kyo-Hyun;Jung, Se-Hoon;Shin, Ho-Sang;Kim, Bae-Hwan
    • Journal of Environmental Health Sciences
    • /
    • v.42 no.1
    • /
    • pp.61-70
    • /
    • 2016
  • Objectives: The purpose of this study is to determine the exposure risk to tattoo components by analyzing skin absorption using the in vitro method. Tattoos are commonly used for cosmetic purposes, and the skin of not only the operator but of the people who are undergoing the cosmetic procedure is continuously exposed to hazardous chemicals. Methods: Skin permeation risk determination was conducted by the in vitro Franz diffusion cell method according to the ingredient types of tattoo dyes, such as volatile organic compounds (VOCs), non-volatile organic compounds and heavy metals, using hairless mouse full skin and human cadaver epidermis. Results: The major components with good skin penetration for each type of tattoo dye ingredient were clarified. Among the tatto dye ingredients, 1,2-Dichlorobenzene, Zn, Al, Pb and Ti showed good skin penetration. Most of the skin transmission rates were higher in hairless mouse full skin than in human cadaver epidermis. Conclusion: A possible exposure risk to hazardous substances in tattoo dyes was confirmed from this study. These results are expected to provide a positive contribution to the establishment of management regulations for tattoo dyes.

A Study on Prevention of Explosion Accidents by Complex Treatment Methods in Semiconductor Exhaust Process (반도체 배기 공정에서 복합 처리 방식으로 인한 폭발 사고 예방대책에 관한 연구)

  • Choi, Se Wook;Lee, Dae Joon;Kim, Sang Ryung;Kim, Sang Gil;Jeong, Jeong Hee;Yang, Won Baek
    • Journal of the Korean Institute of Gas
    • /
    • v.26 no.5
    • /
    • pp.28-34
    • /
    • 2022
  • Since semiconductor factories are located in densely populated areas, safe handling of hazardous materials handled in the manufacturing process is of utmost importance. In particular, the types of hazardous substances discharged after handling in the semiconductor manufacturing process are very diverse, and the treatment methods such as combustion, absorption and adsorption methods for each material are very complicated. Therefore, in recent semiconductor exhaust treatment processes, two or more treatment methods are applied to one treatment facility, and unexpected accidents occur due to the application of such a complex treatment method. In this study, the cause of accidents in treatment facilities that applied both the scrubber method and the electrostatic precipitation method, which are recent accident cases, are identified, and preventive measures are suggested to find out the points to be noted when applying the complex treatment method.

Characteristics of Pesticide Runoff and Persistence on Agricultural Watersheds in Korea (영농지역에서 작물재배 형태에 따른 농약의 잔류성과 유출특성)

  • Park, Byung-Jun;Kwon, Oh-Kyung;Kim, Jin-Kyoung;Kim, Jin-Bea;Kim, Jin-Ho;Yoon, Soon-Kang;Shim, Jae-Han;Hong, Moo-Gi
    • Korean Journal of Environmental Agriculture
    • /
    • v.28 no.2
    • /
    • pp.194-201
    • /
    • 2009
  • To evaluate the exposure of non-point source pesticide pollution in agricultural watershed and to investigate pesticide distribution and runoff from agricultural land, paddy field, upland and orchard, this experiment was carry out during crop growing seasons. The pesticide were detected twenty pesticides fungicide 4, insecticide 10, herbicide 6) in water of Neungchon agricultural watershed and detection concentrations were range 0.008${\sim}$7.59 ppb. Most of the detection pesticides were using pesticides to rice paddy fields to control fungi, insects, weeds. During the crop cultivation, the pesticide were detected total thirty pesticides by pepper field soil 6, orchard soil 4, sesame field soil 3 and rice paddy field soil 5, and pesticide concentrations were range 0.001${\sim}$0.109 ppm. Especially the herbicides were detected mainly in May and June in the stream water. The pesticide were detected thirty pesticides by fungicide 2, insecticide 6, herbicide 5 in water of Jungam Koseong agricultural watershed and detection concentrations were range 0.01${\sim}$7.21 ppb. In regard to the detected pesticides, the concentration of individual pesticides measured in surface water of the study areas never exceeded guidelines for agriculture chemicals concerning water quality-effluent from paddy fields in Japan (Katayama, 2003). Runoff rate of pesticides was range 0.07${\sim}$3.06 % from Kongju agricultural land to watershed after applied pesticides.

Characteristics of Hazardous Substances Generated from Combustible Compressed Wood Used during Live Fire Training for Firefighters (소방 실화재 훈련에서 사용하는 압축목재 가연물에서 발생하는 유해물질 특성)

  • Lee, Yongho;Kim, Jinhee;Kim, Uijin;Choi, Won-Jun;Lee, Wanhyung;Kang, Seong-Kyu;Lee, So Yun;Ham, Seunghon
    • Journal of Environmental Health Sciences
    • /
    • v.46 no.5
    • /
    • pp.555-564
    • /
    • 2020
  • Objectives: To identify and investigate through qualitative and quantitative analysis the hazardous substances generated when compressed wood was burned at a live fire-training center. Methods: Four types of compressed wood that are actually used in live fire training were burned in a chamber according to KS F2271. The gaseous material was sampled with a gas detector tube and conventional personal samplers. Results: 1,3-butadiene, benzene, toluene, xylene, formaldehyde, hydrogen chloride, hydrogen cyanide, ammonia, carbon monoxide, and nitric acid were detected. In particular, 1,3-butadiene (497.04-680.44 ppm), benzene (97.79-125.02 ppm), formaldehyde (1.72-13.03 ppm), hydrogen chloride (4.71-15.66 ppm), hydrogen cyanide (3.64-8.57 ppm), and sulfuric acid (3.85-5.01 ppm) exceeded the Korean Occupational Exposure Limit as measured by sampling pump according to the type of compressed wood. Conclusions: We found through the chamber testing that firefighters could be exposed to toxic substances during live fire training. Therefore, firefighter protection is needed and more research is required in the field.

Statistical Analysis of Chemical Substance Transporting Accidents (화학물질 운송 화학사고의 통계 특성 분석에 관한 연구)

  • Lee, Tae-Hyung;Lee, Sang-Jae;Shin, Chang-Hyun
    • Fire Science and Engineering
    • /
    • v.30 no.6
    • /
    • pp.23-30
    • /
    • 2016
  • This study analyzed the characteristics of chemical accidents, including the accidents occurring each year according to status, type of accident, accident cause for chemical substance transporting accidents. The major aim of this study was to provide information on the chemical accidents that occurred involving chemical substance transporting accidents from 2013 to July - 2016. The total incidence of chemical transporting accidents was 77 cases; 74 cases occurred by the spill & leakage type. The main cause of the accidents analyzed was traffic accidents (41 cases). Forty-six accidents were related to hazardous chemical substances. Among the 46 hazardous chemical substances involved in transporting chemical accidents, 46% of the accident substances were hydrogen chloride. For the prevention and response to accidents occurring during the transportation of chemicals, it is necessary to complement the precautions for chemical accidents caused by transportation accidents and chemical spills and leaks of chemicals. In addition, when the chemical transport of an accident occurs, it is necessary to apply a chemical transport safety system for chemical transfer.

A Study on the Identification of Hazardous Organic Substances for Industrial Classification (업종별 유해성 유기물질의 확인에 대한 연구)

  • Park, Sun Ku;Kim, Sung Soo;Ko, O Suk;Jung, Sung Woong;Park, Jun Dae;Ryu, Seung Do;Ryu, Jae Kyun;Cho, Hyun-Woo
    • Analytical Science and Technology
    • /
    • v.9 no.4
    • /
    • pp.392-398
    • /
    • 1996
  • Eleven organic chemical substances, tetrachloroethylene, ethyl benzene, p-xylene, o-xylene, isopropyl benzene, n-propyl benzene. 1,2,4-trimethyl benzene, 1,3,5-trimethyl benzene, p-isopropyl toluene. see-butyl benzene, and naphthalene, which have hazardously influenced to human, were extracted from untreated wastewater collected at 26 companies of 8 types industry in the basin of Kwangju stream. Their structures were elucidated by Gas Chromatography/Mass Spectrometry(GC/MS) and in comparison with each standard reagents.

  • PDF

Exposure Characteristics for Chemical Substances and Work Environmental Management in the Semiconductor Assembly Process (반도체 조립공정의 화학물질 노출특성 및 작업환경관리)

  • Park, Seung-Hyun;Park, Hae Dong;Shin, In Jae
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.24 no.3
    • /
    • pp.272-280
    • /
    • 2014
  • Objectives: The purpose of this study was to evaluate the characteristics of worker exposure to hazardous chemical substances and propose the direction of work environment management for protecting worker's health in the semiconductor assembly process. Methods: Four assembly lines at two semiconductor manufacturing companies were selected for this study. We investigated the types of chemicals that were used and generated during the assembly process, and evaluated the workers' exposure levels to hazardous chemicals such as benzene and formaldehyde and the current work environment management in the semiconductor assembly process. Results: Most of the chemicals used at the assembly process are complex mixtures with high molecular weight such as adhesives and epoxy molding compounds(EMCs). These complex mixtures are stable when they are used at room temperature. However workers can be exposed to volatile organic compounds(VOCs) such as benzene and formaldehyde when they are used at high temperature over $100^{\circ}C$. The concentration levels of benzene and formaldehyde in chip molding process were higher than other processes. The reason was that by-products were generated during the mold process due to thermal decomposition of EMC and machine cleaner at the process temperature($180^{\circ}C$). Conclusions: Most of the employees working at semiconductor assembly process are exposed directly or indirectly to various chemicals. Although the concentration levels are very lower than occupational exposure limits, workers can be exposed to carcinogens such as benzene and formaldehyde. Therefore, workers employed in the semiconductor assembly process should be informed of these exposure characteristics.

Work Environments and Exposure to Hazardous Substances in Korean Tire Manufacturing

  • Lee, Na-Roo;Lee, Byung-Kyu;Jeong, Si-Jeong;Yi, Gwang-Yong;Shin, Jung-Ah
    • Safety and Health at Work
    • /
    • v.3 no.2
    • /
    • pp.130-139
    • /
    • 2012
  • Objectives: The purpose of this study is to evaluate the tire manufacturing work environments extensively and to identify workers' exposure to hazardous substances in various work processes. Methods: Personal air sampling was conducted to measure polycyclic aromatic hydrocarbons, carbon disulfide, 1,3-butadiene, styrene, methyl isobutyl ketone, methylcyclohexane, formaldehyde, sulfur dioxide, and rubber fume in tire manufacturing plants using the National Institute for Occupational Safety Health Manual of Analytical Methods. Noise, carbon monoxide, and heat stress exposure were evaluated using direct reading instruments. Past concentrations of rubber fume were assessed using regression analysis of total particulate data from 2003 to 2007, after identifying the correlation between the concentration of total particulate and rubber fume. Results: Workers were exposed to rubber fume that exceeded 0.6 mg/$m^3$, the maximum exposure limit of the UK, in curing and production management processes. Forty-seven percent of workers were exposed to noise levels exceeding 85 dBA. Workers in the production management process were exposed to $28.1^{\circ}C$ (wet bulb globe temperature value, WBGT value) even when the outdoor atmosphere was $2.7^{\circ}C$ (WBGT value). Exposures to other substances were below the limit of detection or under a tenth of the threshold limit values given by the American Conference of Governmental Industrial Hygienists. Conclusion: To better classify exposure groups and to improve work environments, examining closely at rubber fume components and temperature as risk indicators in tire manufacturing is recommended.