• Title/Summary/Keyword: Hatching Rate

Search Result 465, Processing Time 0.024 seconds

Adverse Effect of Human Hydrosalpingeal Fluid on the Development of Mouse Embryo (II) (인체의 난관수종액이 생쥐의 배아발달에 미치는 영향: II. 포배기내의 세포 수에 미치는 영향)

  • Koong, Mi-Kyoung;Jun, Jin-Hyun;Song, Sang-Jin;Song, Ji-Hong;Hong, Soo-Jeong;Yoon, Keun-Jae;Song, Il-Pyo;Kim, Jeong-Wook;Kang, Inn-Soo
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.26 no.2
    • /
    • pp.213-217
    • /
    • 1999
  • In our previous study, we observed that hydrosalpingeal fluid (HSF) adversely effect mouswe embryo development and hatching. The aim of this study was to evaluate the effect of HSF as assessed by the blastocyst development rate (BDR) and by cell counting in vitro. HSF was collected from ninie patients undergoing salpingoneostomy to correct hydrosalpinx. Two-cell embryos were obtained from superovulated ICR mice. T6 medium and $T6{\pm}0.4%$ bovine serum albumin were used as control media. T6 medium containing 10% or 50% HSF and 100% HSF from each patient were used as test media. Nine to 15 embryos were cultured in micro drops prepared from each of these media. To assess the total cell number within each blastocyst, the blastocysts were fixed and stained with Hoechst 33342 to facilitate cell counting. The mean BDR in two control media were 88.89% and 85.40%. The mean BDR in media containing 10%, 50%, 100% HSF were 85.87%, 89.58% and $75.57%^*$, respectively ($^*$: p<0.05). The overall mean cell count $({\pm}SEM)$ in control media were $87.6{\pm}9.65\;and\;90.12{\pm}11.38$. The BDR was affected adversely only by 100% HSF and not in media containing 10% or 50% HSF. Mean cell counts were decreased significantly only in blastocysts cultured 100% HSF ($63.8{\pm}13.66$; p<0.01) but not in blastocysts cultured in 10% or 50% HSF ($91.3{\pm}12.44\;and\;82.9{\pm}18.27$, respectively). Thus, it is concluded that HSF has no embyotoxic effect but has a mildly negatively effect on embryonic growth and development.

  • PDF

Nesting Habits and Breeding Biology of Barn swallow (Hirundo rustica) in Korea (한국에서 제비 Hirundo rustica 의 영소습성과 번식생태)

  • Kim, Sang-jin;OH, Hong-shik
    • Korean Journal of Environment and Ecology
    • /
    • v.31 no.1
    • /
    • pp.24-29
    • /
    • 2017
  • This study was conducted to identify nesting habits and breeding biology of barn swallow in Gwangju, Korea, for the breeding season 2012 to 2014. All nests were attached to vertical walls and roofs of buildings and situated at mean height $2.9{\pm}0.3m$ above ground with nest diameter $18.2{\pm}3.2cm$, nest depth $9.8{\pm}3.1cm$, nest cup diameter $11.2{\pm}1.5cm$ and nest cup depth $3.27{\pm}0.80cm$. Nests were attached to cemented walls (44.9%), wooden materials (23.1%), bricks (21.8%) and lighting (6.4%). The average clutch size was 4.5 and ranged 2~5. Mean egg length was $18.23{\pm}0.73mm$, breadth $13.11{\pm}0.25mm$, volume $1.60{\pm}0.11cm^3$, shape index $1.39{\pm}0.05$ and weight $1.69{\pm}0.15g$. Hatching and fledgling success rate were 89.1% and 84.5%. Main causes for reproductive failures were unhatched eggs, predation, nest destruction and desertion. These results are expected to be widely used as data for habitat preservation and species management of barn swallows.

Practical Applications of DNA Marker-Assisted Selection and OPU-Derived IVF Embryo Transfer for the Production of High Quality Meat in Hanwoo II. Production of IVF Embryos Derived Transvaginal Ovum Pick-up from DNA Marker-Proved Hanwoo (유전자 분석을 통하여 선발된 한우로부터 초음파 유래 체외수정란 이식에 의한 고품질 한우 생산기술의 실용화 II. DNA 검정우로부터 초음파 유래 체외수정란의 생산에 관한 연구)

  • 박희성;이지삼;진동인;박준규;홍승표;이명열;정장용
    • Journal of Embryo Transfer
    • /
    • v.16 no.3
    • /
    • pp.193-201
    • /
    • 2001
  • This study was designed to examine the factors affecting in fertilization and development of embryos in vitro, and to examine whether zone drilling by laser irradiation can improve the hatching rate of IVF embryos from DNA marker-proved Hanwoo. DNA markers related to marbling score were identified using DNA fingerprinting with Ml3 probe and restriction enzyme Hae III. Oocytes were aspirated from immature ovarian follicles using a combined method of rectal ovarian-palpation and transvaginal ultrasound-guidance(6.5MHz) under local anesthesia. The aspirated oocytes were washed twice with fresh D-PBS containing 5% FBS and were rewashed 4 to 5 times with TCM-199 containing 5% FBS. A morphological grade of I to IV was assigned to each oocyte. Data were analyzed using the GLM procedure of SAS. Sperm separation methods did not have any significant effect on cleavage or developmental abilities of IVF embryos. Significantly(P<0.05) higher cleavage rate was observed in embryos from GI(60.0%, 3/5), GII(69.2%, 18/26) and GIII(62.1%, 59/95) compared to embryos from GIV oocytes(36.2%, 25/69). And the developmental rate to blastocyst stage was higher(P<0.05) in embryos from GI(33.3%, 1/3) and GII oocytes(38.9%, 7/18) than those from GIII(16.9%,10/59) and GIV oocytes(4.0%, 1/25). There was no significant difference in development of IVF embryos to blastocyst by media for in vitro culture. Proportion of hatched blastocyst was significantly(P<0.05) higher in embryos received zona drilling by laser than those of non-drilled.

  • PDF

Effects of Age of Hens, Egg Storage, and the Change of Egg Weight during Incubation on the Growth of Broiler Chicks (어미닭의 나이, 계란의 저장기간 및 부화중 난중의 변화가 육용계 병아리의 성장에 미치는 효과)

  • Suk Y. O.
    • Korean Journal of Poultry Science
    • /
    • v.31 no.4
    • /
    • pp.299-306
    • /
    • 2004
  • The objective of this study was to investigate the influence of egg storage, broiler breeder age, and the change of egg weight during incubation on growth rate of chicks and 43-day-old dressing percentage. The trials involved hatching eggs obtained from 27-wk-old hens and stored for 6 d for the Young-EXP group, from 28-wk-old hens and stored for 0 d for the Young-CON group, from 51-wk-old hens and stored for 6 d for the Old-EXP group, and from 52-wk-old hens and stored for 0 d for the Old-CON group, The hens were two commercial broiler breeder flocks of the same strain (Cobb) but of different egg producing stages(early and middle stages of egg production). The chicks were grown on floor pens for 6 wks, The differences of setting egg weights between Old-CON and Old-EXP groups were 1 g, but those between Young-CON and Young-EXP groups were 2.9 g(P<0,05). The loss of egg weight during 18 d incubation did not greatly differ among four groups, but the loss of egg weight during 21 d incubation was significantly (P<0.05) more in the middle stage of egg production groups than in the early stage of egg production groups. The mean birth weights of the middle stage of egg production groups were significantly(P<0,05) heavier by 8,7 g than those of the early stage of egg production groups; however, the differences of 6-wk-old body weight were not significant between egg producing stages. The differences of body weights in both egg producing stages were not significantly influenced by egg storage period in overall wks of ages. Egg storage and hen age did not greatly influence to the 43 d dressing percentages, either, The correlations of the setting egg weight with 18 d egg weight during incubation, growth rate of chicks, or 43 d dressing percentage were not significant.

STUDIES ON THE PROPAGATION OF TOP SHELL-I Spawning and early development of the top shell, Turbo cornutus SOLANDER (소라 Turbo cornutus SOLANDER의 증식에 관한 연구-I 소라의 산란과 초기발생)

  • RHO Sum
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.9 no.1
    • /
    • pp.43-55
    • /
    • 1976
  • Fertilization and early development of turbo cornutus was studied based on the samples which were collected in Yeosu area. Particular emphasis was paid on induction of artificial spawing, fertilization rate, preembryonic development, the growth of the early larva and larval survival to various salinity. Among the various methods for induction of artificial spawning which have been tested for the present study, drying by exposure to air is the. most efficient, and percentage fertilization rate was $83.8-96.4\%$. The diameter of fertilized eggs was $0.182{\pm}0.0028mm$; and the diameter of egg membrane was $0.245{\pm}0.093mm$. Under the temperature range of $20.6-25.4^{\circ}C$ the larvae hatched out after 11:05-11:15 hours of fertilization. After 3.0-3.5 days of fertilization the planktonic larvae begand to settle, and the settlement terminated within 5 days. During the period of 150 days of early culturing the diameter growth of shell(M) and the diameter of shell aperture(A) was formulated as follows: $$1972\;M=0.33e^{0.02070D}$$ $$A=0.19e^{0.02282D}$$ $$1973\;M=0.32e^{0.02282D}$$ $$A=0.16e^{0.02596D}$$ During the same period of early culturing the relative growth of shell diameter and the diameter of shell aperture was formulated as follows : 1972 A=0.6478 S-0.1575 1973 A=0.5897 S-0.0515 After 11 days of larval hatching $0.02-0.18\%$ of planktonic larvae settled. After 150 days of settlement the survival rate of the early shells was $7.4-21.6\%$. Under the temperature range of $21.0-22.7^{\circ}C$ the optimum salinity range for the development of egg and the planktonic larvae was $30-35\%_{\circ}$.

  • PDF

Effect of Temperature on Development and Reproduction of the Cotton Caterpillar, Palpita indica(Lepidoptera: Pyralidae) (목화바둑명나방(나비목:명나방과)의 발육과 생식에 미치는 온도의 영향)

  • Shin, Wook-Kyun;Kim, Gil-Hah;Song, Cheol;Kim, Jeong-Wha;Cho, Kwang-Yun
    • Korean journal of applied entomology
    • /
    • v.39 no.3
    • /
    • pp.135-140
    • /
    • 2000
  • Development and reproduction of the cotton caterpillar, Palpita indica, were investigatedunder different temperatures (15 .O, 17.5, 20.0, 22.5, 25 .O, 27.5, 30.0, 32.5, and 35 .O$^{\circ}$C). Duration fromegg to pre-adult of the cotton caterpillar were ranged from 68.6 days at 175$^{\circ}$C to 19.7 days at 35.0% (3.5times shorter growth period compared with that at 17S$^{\circ}$C). At 15.0$^{\circ}$C, cotton caterpillar eggs developedto the last larval instar but were not able to go through the pupal stage. The lower developmentalthreshold temperatures and degree-days of egg, larva, pupa, and complete development were 13.4, 10.6,11.6, and 11.5"C and 55.3,251.5, 138.3, and 479.8 degree days, respectively. The hatching, pupation andemergence rates were higher at 25.0eC and 27.5"C compared with other temperatures. The survival ratefrom the hatched larva to adult was the highest at 27.5"C. The preoviposition and the adult longevity were11.5 and 30.6 days at 17.5"C and 1.5 and 9.2 days at 35.0$^{\circ}$C, respectively. The mean fecundity perfemales was greater at 25.0$^{\circ}$C and 27.5"C compared with other temperatures. Mean generation time indays (T) was shorter on higher temperature. Net reproductive rate per generation (R,) was the lowest atthe highest temperature as well as at the lowest, and it was 199.1 which was the highest at 27.5"C. Theintrinsic rate of natural increase (r,) was highest at 30.0$^{\circ}$C as 0.148. As a result, optimum ranges oftemperature for P. indica growth were between 25.0-32.5"C .emperature for P. indica growth were between 25.0-32.5"C .t;C .

  • PDF

On the Growth, Feeding Rates and the Efficiency of Food Conversion for Cuttlefishes and Squids (오징어, 꼴뚜기류의 성장 및 섭이율과 이료의 전환효율)

  • CHOE, Sang
    • The Korean Journal of Zoology
    • /
    • v.9 no.2
    • /
    • pp.12-20
    • /
    • 1966
  • Studies on the rate of growth, the rate of feeding and the efficiency of food conversion on the stage of new-born fries to the near adult size for three species of cuttlefishes , Sepia esculenta, Sepia subaculeata, Sepiella maindroni and two species of squids, Sepioteuthis lessomiana, Euprymna berryi were carried out in the process of artificial raising, and then argued about a feasibility of the propagation of cuttlefishes and squids. 1. The relation between the daily age (D) and the body weight(W) of Sepia exculent is expressed in a logarithmic equation, log W=3.0649 log D-4.2768. The daily rates of growth through 121 days of the raising period were 1.46 per cent for the man시 length and 1.67 percent for the body weight. The raipidest growth of Sepia esculenta is observed at the stage of 1 to 4 cm in the mantle length . At that time the daily rates of growth reach 3.3 to 5.5 percent for the mantle length and 10.4 to 12.0 percent for the body weight, respectively. The growth of Sepia esculenta varies a great deal to the bait. When fed on a dead bait the rates of growth decrease 17 per cent for the mantle length and 26 percent for the body weight compared with those fed on a live bait. 2. The relation between the daily age and the body weight of Sepia subaculeata is expressed in a logarithmic equation, log W=3.7447 log D-4.9003. The daily rates of growth through 110 days of the raising period were 1.63 percent for the mantle length and 1.83 percent for the body weight. The rapidest growth of Selia subaculeata is observed at the stage of 1.5 to 9.0 cm in the mantle length. At that time the daily rates of growth reach 3.1 to 7.4 percent for the mantle length and 6.8 to 16.7 percent for the body weight , respectively. 3. The relation between tehdaily age and the body weight of Sepiella maindroni is expressed in a ogarithmic equation , log W=2.9332 log D-3.8224 . The daily rates of growth through 133 days of the rearing period were 1.39 percent for the mantle length and 1.51 percent for the body weight . The rapidest growth of Sepiella maindroni is observed at the stage of 0.4 to 5.8 cm in the mantle length. At that time the daily rates for growth reach 4.6 to 7.3 percent for the mantle length and 8.5 to 15.4 percent for the body weight , respectively. 4. The daily rates of growth onthe stage of 0.5 to 6.0 comin the mantle length of Sepioteuthis lessoniana were 4.1 to 5.9 percent for the mantle length and 7.1 to 10.7 percent for the body weight . 5. During the rearing period of 31 days immediately after the hatching , the daily rateof feeding of Sepia esculenta marked 11.0 to 39.4 percent (28.2 percent in an average), and the efficiency of food conversion of this species reached 9.0 to 71.0percent (38.7percent in an average). Even at the more growing stage of 4.5to 6.2 cm in the mantle length, the daily rate of feeding of three species of cuttlefishes wee maintained 17.7 percent for Sepia esculenta, 30.8 percent for Sepia subaculeata and 34.7percent for Sepiella maindroni on an average. 6. The efficiency of food coversion of cuttlefishes and squids are larger than those of other fishes, and all the species are rapid in their growth. Four to five months are thought to be enough for their growing into a fair commercial size.

  • PDF

Studies on the Propagation of the Freshwater Prawn, Macrobrachium nipponense (De Haan) Reared in the Laboratory 2. Life History and Seedling Production (담수산 새우, Macrobrachium nipponense (De Haan)의 증${\cdot}$양식에 관한 생물학적 기초연구 2. 생활사 및 종묘생산에 관한 연구)

  • KWON Chin-Soo;LEE Bok-Kyu
    • Journal of Aquaculture
    • /
    • v.5 no.1
    • /
    • pp.29-67
    • /
    • 1992
  • Life cycle and seed production of the freshwater prawn, Macrobrachium nipponense, were studied and the results are as follows : 1. Larval development : Embryos hatched out as zoea larvae of 2.06 mm in mean body length. The larvae passed through 9 zoea stages in $15{\~}20$ days and then metamorphosed into postlarvae measuring 5.68 mm in mean body length. Each zoea stage can be identified based on the shapes of the first and second antennae, exo- and endopodites of the first and second pereiopods, telson and maxillae. 2. Environmental requirements of zoea larvae : Zoea larvae grew healthy when fed with Artemia nauplii. Metamorphosing rate was $65{\~}72{\%}$ at $26{\~}28\%$ and $7.85{\~}8.28\%_{\circ}Cl.$. The relationship between the zoeal period (Y in days) and water temperature (X in $^{\circ}C$) is expressed as Y=46.0900-0.9673X. Zoeas showed best survival in a water temperature range of $26{\~}32^{\circ}C$ (optimum temperature $28^{\circ}C$), at which the metamorphosing rate into postlarvae was $54{\~}72\%$ The zoeas survived more successfully in chlorinity range of $4.12{\~}14.08{\%_{\circ}}Cl.$, (optimum chlorinity $7.6{\~}11.6\;{\%_{\circ}}Cl.$.), at which the metamorphosing rate was $42{\~}76{\%}$. The whole zoeal stages tended to be longer in proportion as the chlorinity deviated from the optimum range and particularly toward high chlorinity. Zoeas at all stages could not tolerate in the freshwater. 3. Environmental requirements of postlarvae and juveniles : Postlarvae showed normal growth at water temperatures between $24{\~}32^{\circ}C$ (optimun temperature $26{\~}28^{\circ}$. The survival rate up to the juvenile stage was $41{\~}63{\%}$. Water temperatures below $24^{\circ}C$ and above $32^{\circ}$ resulted in lower growth, and postlarvae scarcely grew at below $17^{\circ}C$. Cannibalism tended to occur more frequently under optimum range of temperatures. The range of chlorinity for normal growth of postlarvae and juveniles was from 0.00 (freshwater) to $11.24{\%_{\circ}}Cl.$, at which the survival rate was $32{\~}35\%$. The postlarvae grew more successfully in low chlorinities, and the best growth was found at $0.00\~2.21{\%_{\circ}}Cl.$. The postlarvae and juveniles showed better growth in freshwater but did not survive in normal sea water. 4. Feeding effect of diet on zoea Ilarvae : Zoea larvae were successfully survived and metamorposed into postlarvae when fed commercial artificial plankton, rotifers, and Artemia nauplii in the aquaria. However, the zoea larvae that were fed Artemia nauplii and reared in Chlorella mixed green water showed better results. The rate of metamorphosis was $68\~{\%}75$. The larvae fed cow live powder, egg powder, and Chlorella alone did not survive. 5. Diets of postlarvae, juveniles and adults : Artemia nauplii and/or copepods were good food for postlarvae. Juveniles and adults were successfully fed fish or shellfish flesh, annelids, corn grain, pelleted feed along with viscera of domestic animals or fruits. 6. Growth of postlarvae, juveniles and adults : Under favorable conditions, postlarvae molted every five or six days and attained to the juvenile stage within two months and they reached 1.78 cm in body length and 0.17 g in body weight. The juveniles grew to 3.52 cm in body length and 1.07 g in body weight in about four months. Their sexes became determinable based on the appearance of male's rudimental processes (a secondary sex character) on the endopodites of second pereiopods of males. The males commonly reached sexual maturity in seven months after attaining the postlarvae stage and they grew to 5.65 cm in body length and 3.41 g in body weight. Whereas the females attained sexual maturity within six to seven months, when they measured 4.93 cm in body length and 2.43 g in body weight. Nine or ten months after hatching, the males grew $6.62{\~}7.14$ cm in body length and $6.68{\~}8.36$ g in body weight, while females became $5.58{\~}6.08$ cm and $4.04{\~}5.54$ g. 7. Stocking density : The maximum stocking density in aquaria for successful survival and growth was $60{\~}100$ individuals/$\ell$ for zoeas in 30-days rearing (survival rate to postlarvae, $73{\~}80{\%}$) ; $100{\~}300$ individuals/$m^2$ for postlarvae of 0.57 cm in body length (survival rate for 120 days, $78{\~}85{\%}$) ; $40{\~}60$ individuals/$m^2$ for juveniles of 2.72 cm in body length (survival rate for 120 days, $63{\~}90{\%}$) : $20{\~}40$ individuals/$m^2$ for young prawns of 5.2 cm in body length (survival rate for 120 days, $62\~90{\%}$) ; and $10\~30$ individuals/$m^2$ for adults of 6.1 cm in body length (survival rate for 60 days, $73\~100{\%}$). The stocking density of juveniles, youngs and adults could be increased up to twice by providing shelters.

  • PDF

Relationship between Ovarian Development and Plasma Levels of Steroid Hormones, and Induction of Oocyte Maturation and Ovulation in the Cultured Female Korean Sea Bass, Lateolabrax japonicus (양식산 농어, Lateolabrax japonicus 암컷의 난소발달과 혈중 스테로이드 호르몬 양상 및 난모세포 성숙 및 배란유도)

  • 이원교;양석우;곽은주
    • Development and Reproduction
    • /
    • v.4 no.2
    • /
    • pp.187-193
    • /
    • 2000
  • Gonad and blood samples were taken from the cultured female Korean sea bass, Lateolabrax japonicus from October to February between 1997 and 1999. Gonadosomatic index began to increase in November and reached the highest value in December (12.8$\pm$1.5) and January (14.8$\pm$3.5), and then decreased sharply in February (2.6$\pm$1.5, p<0.05). The ovarian oocytes developed to tertiary yolk stage and reached fully-Brown stage in December and January, and then underwent atresia without maturation and ovulation in February. The plasma estradio3-17 $\beta$ level increased from November, and reached the highest value in December (1,152.3$\pm$107.2 pg/ml) and January (1,315.4$\pm$99.5 pg/ml), after then decreased in February (P<0.05). The concentration of plasma 17 $\alpha$ ,20 $\beta$-dihydroxy-4-pregnen-3-one was not significantly changed at low levels (86.6$\pm$6.5∼93.8$\pm$2.8 pg/ml) during the experimental period (P<0.05). All the fish with fully-grown oocytes in the ovary were matured and ovulated by HCG injection. The number of floating eggs were 325,000$\pm$26,000 at HCG 1,000 luhg and 195,000$\pm$35,000 at 2,000 lUikg. There was no difference in fertilization rate and hatching rate of the eggs (P<0.05). Considering these results, we could infer that the ovarian oocyte of the cultured Korean sea bass were not matured and ovulated because of the lack of gonadotropin surge. Moreover, HCG injection could induce oocyte maturation and ovulation in the cultured fish, and the effective dose was 1,000 IU/kg.

  • PDF

Establishment of Optimal Rearing Conditions for the Production of Tenebrio molitor Larvae (갈색거저리 유충 생산을 위한 효율적인 사육조건 확립)

  • Kim, Sihyeon;Kim, Jong Cheol;Lee, Se Jin;Kim, Jae Su
    • Korean journal of applied entomology
    • /
    • v.55 no.4
    • /
    • pp.421-429
    • /
    • 2016
  • Tenebrio molitor larvae contain large amounts of proteins, lipids and other functional materials, enabling this insect to be used as an edible food source in animal feeds and for industrialization. Although many efforts have been made to set up mass rearing systems, few studies have been conducted to establish optimal rearing conditions for the production of high quality T. molitor larvae. Herein we investigated 1) the effects of additional diets on the survival and fecundity of the insect, 2) the relationship between oviposition period and the uniformity of larval size, 3) the effects of rearing density and temperature on insect development, and 4) the storage stability of eggs and pupae at low temperatures given possible temporary production discontinuation. The addition of carrot and zucchini to the traditional wheat bran diet significantly increased the survival and fecundity rate of adult T. molitor. Of the three different oviposition sampling periods (3, 7, and 14 days) used to investigate the uniformity of the hatched larvae in each treatment, the period of 3 and 7 days provided higher uniformity than the 14 days oviposition period. Larval development was faster at $30^{\circ}C$ than at 20, 25, and $35^{\circ}C$. Interestingly, oviposition rates were highest at $20^{\circ}C$ but showed much slower larval development and lower uniformity at $30^{\circ}C$. Regarding the effect of larval rearing densities (1, 10, 20, 30, 40, and 50 larvae per 90 mm diam. dish), larval weight was significantly reduced at higher rearing densities, but larval longevity and length were not influenced by rearing density. The 30 larvae/dish is suggested to be a reasonable density to be applied to mass production systems. When kept at $4^{\circ}C$, T. molitor eggs showed a significant reduction in hatching rate; however, when stored under the same conditions, pupae emergence rates remained high until 10 weeks, suggesting that storage at low temperatures is more suitable for the pupal stage than the egg stage. Our findings suggest that an increase in T. molitor adult survival and fecundity rates and a uniformity of hatched larval development can be achieved with the following recommendations: a combination diet (including wheat bran), a 7-day oviposition period; a larvae-rearing temperature of $30^{\circ}C$, a rearing density of 30 larvae/dish, and the storage of pupal stages at low temperatures in the case of rearing discontinuation. This study serves as a strong foundation for the successful mass production of high quality T. molitor larvae.