• 제목/요약/키워드: Hat section

검색결과 63건 처리시간 0.023초

이상화된 자동차 측면부재의 충돌특성 향상에 관한 연구 (Crashworthiness Improvement of Idealized Vehicle's Side Rails)

  • 김흥수;박신희;강신유;한동철
    • 한국자동차공학회논문집
    • /
    • 제4권2호
    • /
    • pp.189-197
    • /
    • 1996
  • In this study, the crashworthiness analysis was carried out for the hat type section side rails which had an important role of absorbing the impact energy during frontal crash. In case of a tapered hat type section model, numerical simulation models and test models were designed with varing design variables; welding pitch, taper angle, initiator shape, initiator location. The effect of variation of the design variables was investigated by quasi-static and dynamic test and numerical simulation.

  • PDF

구조용 폼과 플라스틱 보강재를 적용한 모자 단면 부재의 좌굴 특성 분석 (Analysis of Buckling Characteristics for Hat Section Member Using Structural Foam and Plastic Reinforcement)

  • 이태현;신성기
    • 한국자동차공학회논문집
    • /
    • 제16권2호
    • /
    • pp.114-119
    • /
    • 2008
  • The modern automotive industry develops innovative vehicle designs to meet increasing stability of car and performance demands of their customers. The improvement of frame rigidity by the structural foam is thought to be an effective means to improve the performance because of high applicability and minimum weight. The object of this paper is to examine the use of structural foam in a hat section as an optimum reinforcing means, to compare the reinforcing performance of structural foam versus a plastic reinforcement. The result of this paper indicated that reinforcing efficiencies are achieved by structural foam and plastic reinforcement shape.

모자형 단면부재의 폭비와 플랜지 용접간격에 따른 압궤특성 (Collapse Characteristics on Width Ratio and Flange Spot-Weld Pitch for Hat-Shaped Members)

  • 차천석;강종엽;김영남;김정호;김선규;양인영
    • 대한기계학회논문집A
    • /
    • 제25권1호
    • /
    • pp.98-105
    • /
    • 2001
  • The fundamental and widely used spot welded sections of automobiles (hat and double hat-shaped section members) absorb most of the energy in a front-end collision. The sections were tested on axial static(10mm/min) and quasi-static(1000mm/min) loads. Based on these test results, specimens with various thickness, shape and spot weld pitch on the flange have been tested with impact velocity(7.19m/sec) the same as a real life car clash. Characteristics of collapse have been reviewed and a structure of optimal energy absorbing capacity is suggested.

차체구조용 박육단면부재의 단면형상변화에 따른 축압궤 특성에 관한 연구 (A Study on the Axial Collapse Characteristics of Thin-Walled Members for Vehicles on the Variation of Section Shapes)

  • 이길성;백경윤;차천석;정진오;양인영
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2003년도 춘계학술대회 논문집
    • /
    • pp.1549-1552
    • /
    • 2003
  • The front-end side members of automobiles absorb most of the energy in a front-end collision. The front-end side members are required to have a high stiffness together with easiness to collapse sequentially to absorb more impact energy. The axial static collapse test (5mm/mim) was conducted by using UTM with respect to the single hat shaped section members which are the standard section shape of the spot welded section members, to the single cap shaped section members, to the double cap shaped section members and to the double hat shaped section members whose section shape are changed in order to give more stiffness. As a result of test, the energy absorbing characteristic was analyzed for different section shapes. That is, it was analyzed that the change of section shape influenced the absorbing energy, the mean collapse load and the maximum collapse load, and that the relation between the change of section shape and the collapse mode.

  • PDF

좌우 대칭 모자형 단면이 길이 방향으로 선형적으로 변하는 롤 포밍 공정의 개발 (Development of a Roll-Forming Process of Linearly Variable Symmetric Hat-type Cross-section)

  • 김광희;윤문철
    • 한국기계가공학회지
    • /
    • 제14권4호
    • /
    • pp.118-125
    • /
    • 2015
  • The roll-forming process is a highly productive incremental forming process and is suitable for manufacturing thin, high-strength steel products. Recently, this process has been considered one of the most productive processes in manufacturing high-strength steel automotive structural parts. However, it is very difficult to develop the roll-forming process when the cross-sectional shape of the product changes in the longitudinal direction. In this study, a roll-forming process for manufacturing high-strength steel automotive parts with a linearly variable symmetric hat-type cross-section was developed. The forming rolls were designed by the 3D CAD system, CATIA. Additionally, the designed forming rolls were modified by the simulation through the 3D elastic-plastic finite element analysis software, MARC. The results of the finite element analysis show that the final roll-forming roll can successfully produce the desired high-strength steel automotive part with a variable cross-section.

Structural Design and Construction for Tall Damped Building with Irregularly-Shaped Plan and Elevation

  • Yamashita, Yasuhiko;Kushima, Soichiro;Okuno, Yuuichirou;Morishita, Taisei
    • 국제초고층학회논문집
    • /
    • 제7권3호
    • /
    • pp.255-264
    • /
    • 2018
  • This paper introduces three distinctive means for the use of a 189-meter high damped structure ensuring safety against earthquake: 1. Realization of L-shaped elevational structural planning: The bottom and top of the tower have belt trusses and hat trusses respectively to restrain the bending deformation. Furthermore, large-capacity oil dampers (damping force 6,000 kN) are installed in the middle part of the tower to restrain the higher-mode deformation. 2. Realization of L-shaped planar structural planning: We devised a means of matching the centers of gravity and rigidity by adjusting planar rigidity. Moreover, viscous damping devices are located at the edges of the L-shaped plan, where torsional deformation tends to be amplified. We call this the "Damping Tail" system. 3. Composite foundation to equalize deformations under different loading conditions: We studied the vertical and horizontal deformations using sway-rocking and 3D FEM models including the ground, and applied multi-stage diameter-enlarged piles to the tower and a mat foundation to the podium to keep the foundations from torsional deformations and ensure structural safety.

Design Study of Adhesively Bonded Structures

  • Chung, Jae-Ung
    • 한국CDE학회논문집
    • /
    • 제14권2호
    • /
    • pp.122-128
    • /
    • 2009
  • The failure responses of adhesively bonded, hat stiffened structures are studied through numerical analysis using the finite element method. The responses are evaluated numerically for the bonded hat section/substrate structures containing different combinations of materials. It is studied what kind of material combinations causes the easier crack initiation in the structure. This study is conducted under plane strain conditions and J-integral via a commercial code ABAQUS as a total critical energy release criterion was used for observation on crack initiation. Also, the influence of adhesive on the structure is studied.

프론트 사이드 멤버의 경사 충돌 성능 (Crash Performance of Front Side Member Impacted with Angle)

  • 강성종
    • 한국자동차공학회논문집
    • /
    • 제22권2호
    • /
    • pp.52-59
    • /
    • 2014
  • Front impacted SUV vehicle shows that the front parts of side members are collapsed by the bending due to the transverse load exerted at the end of side members. Side member models were impacted with various angles in order to study the crash performance according to the impact angle. Even for the small impact angle of $10^{\circ}$, crash performance seriously deteriorated and the deformations for impact angle $15^{\circ}$ were similar to those from the front body impact analysis. In addition, the angled front impact analysis for the straight member with hat section was carried out and the effects of inner reinforcement shape on crash performance was investigated.

Comparative Study of Metallic and Non-metallic Stiffened Plates in Marine Structures

  • Jeong, Han-Koo
    • 한국전산구조공학회논문집
    • /
    • 제23권6호
    • /
    • pp.715-726
    • /
    • 2010
  • In this paper, a comparative study of metallic and non-metallic stiffened plates under a lateral pressure load is performed using conventional statistically determinate and SQP(Sequential Quadratic Programming) optimisation approaches. Initially, a metallic flat-bar stiffened plate is exemplified from the superstructure of a marine vessel and, subsequently, its structural topology is varied as hat-section stiffened FRP(Fibre Reinforced Plastics) single skin plates and monocoque FRP sandwich plates having a PVC foam core. These proposed structural alternatives are analysed using elastic closed-form solutions and SQP optimisation method under stress and deflection limits obtained from practice to calculate and optimise geometry dimensions and weights. Results obtained from the comparative study provide useful information for marine designers especially at the preliminary design stage where various building materials and structural configurations are dealt with.

Heights on singular projective curves

  • Choi, Hyun-Joo
    • 대한수학회논문집
    • /
    • 제10권1호
    • /
    • pp.1-10
    • /
    • 1995
  • In this paper we show that for each divisor class c of degree zero on a projective curve C (not necessarily smooth), there exists a unique function $\hat{h}_c$ on C up to bounded functions. Section 1 contain basic definitions and a brief summary of classical results on Jacobians and heights. In section 2, we prove the existence of "canonical height" on a singular curves and in section 3 we prove the analogouse results on N$\acute{e}$ron functions for singular curves. This is a part of the author's doctorial thesis at Ewha Womens University under the guidence of professor Sung Sik Woo.g Sik Woo.

  • PDF