• Title/Summary/Keyword: Harvesting method

Search Result 507, Processing Time 0.033 seconds

SIMULATION OF ENERGY HARVESTING EEL BY THE IMMERSED BOUNDARY METHOD

  • Jung, Ki-Sung;Huang, Wei-Xi;Sung, Hyung-Jin
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.197-203
    • /
    • 2008
  • In the present study, we carry out numerical simulations of energy harvesting eel by using the immersed boundary method. Eel is modeled by a flexible filament and is placed behind a circular cylinder. We perform systematic simulations in order to explore the effects of Reynolds number. The instantaneous eel motion is analyzed under different conditions and surrounding vortical structures are identified. The flapping frequency of eel has been compared with that in case of plate alone as well as filament alone. As increasing Reynolds number, we can see that the flexible filament flaps passively by obtaining the Strouhal number of cylinder alone and filament with cylinder.

  • PDF

Three-Stage Power Management System Employing Impedance Coupler Switch for Triboelectric Nanogenerator (마찰전기 나노발전기를 위한 임피던스 커플러 스위치를 탑재한 3단계 전력 관리 시스템)

  • Yoon, Bo-Kyung;Lee, Jun-Young;Jun, Jee-Hoon
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.25 no.4
    • /
    • pp.243-250
    • /
    • 2020
  • Energy harvesting is a recent technology involving the harvest and utilization of extremely small surrounding energy. Energy harvesting research is conducted in various fields. Triboelectric nanogenerators (TENGs) are energy harvesting technologies that use static electricity generated by physical movement or friction. Although TENGs generate output power in microwatt levels, they experience high internal impedance compared with other energy harvesting generators, thereby making the continuous transfer of electric power to loads difficult. This study proposes a power management system for TENGs that consists of three stages, that is, an AC/DC rectifier, an impedance coupler switch with a capacitor bank, and a DC/DC converter. In addition, the selection method of the AC/DC rectifier and DC/DC converter is proposed to maximize the amount of power transferred from energy harvesting areas. Furthermore, the impedance coupler switch and capacitor bank are discussed in detail. The validity and performance of the proposed three-stage power management system for TENGs are verified using a prototype system.

Method of Spectrum Sensing and Energy Harvesting in Cognitive Communication Network (인지 통신 네트워크의 스펙트럼 감지 및 전력 수집 방안)

  • Kim, Tae-Wook;Kong, Hyung-Yun
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.15 no.2
    • /
    • pp.45-49
    • /
    • 2015
  • In this paper, we proposed not specturm sensing but also save energy without consume energy of secondary network that spectrum sensing of cognitive applied energy harvesting scheme. Algorithms of sensing and harvesting is determine active or idle of primary network, compares the amount of energy that is harvested by energy harvesting scheme with the threshold. If secondary network to send a message and primary network is active, by changing frequency to use the spectrum. Further, if secondary network have no message, continues energy harvest. Therefore, spectrum sensing applied energy harvesting scheme, energy of secondary network is remove waste and charge energy, efficiency and utilization of cognitive network can be increase.

Estimating Optimal Harvesting Production of Yellow Croaker Caught by Multiple Fisheries Using Hamiltonian Method (해밀토니안기법을 이용한 복수어업의 참조기 최적어획량 추정)

  • Nam, Jong-Oh;Sim, Seong-Hyun;Kwon, Oh-Min
    • The Journal of Fisheries Business Administration
    • /
    • v.46 no.2
    • /
    • pp.59-74
    • /
    • 2015
  • This study aims to estimate optimal harvesting production, fishing efforts, and stock levels of yellow croaker caught by the offshore Stow Net and the offshore Gill Net fisheries using the current value Hamiltonian method and the surplus production model. As analyzing processes, firstly, this study uses the Gavaris general linear model to estimate standardized fishing efforts of yellow croaker caught by the above multiple fisheries. Secondly, this study applies the Clarke Yoshimoto Pooley(CY&P) model among the various exponential growth models to estimate intrinsic growth rate(r), environmental carrying capacity(K), and catchability coefficient(q) of yellow croaker which inhabits in offshore area of Korea. Thirdly, the study determines optimal harvesting production, fishing efforts, and stock levels of yellow croaker using the current value Hamiltonian method which is including average landing price of yellow croaker, average unit cost of fishing efforts, and social discount rate based on standard of the Korean Development Institute. Finally, this study tries sensitivity analysis to understand changes in optimal harvesting production, fishing efforts, and stock levels of yellow croaker caused by changes in economic and biological parameters. As results drawn by the current value Hamiltonian model, the optimal harvesting production, fishing efforts, and stock levels of yellow croaker caught by the multiple fisheries were estimated as 19,173 ton, 101,644 horse power, and 146,144 ton respectively. In addition, as results of sensitivity analysis, firstly, if the social discount rate and the average landing price of yellow croaker continuously increase, the optimal harvesting production of yellow croaker increases at decreasing rate and then finally slightly decreases due to decreases in stock levels of yellow croaker. Secondly, if the average unit cost of fishing efforts continuously increases, the optimal fishing efforts of the multiple fisheries decreases, but the optimal stock level of yellow croaker increases. The optimal harvest starts climbing and then continuously decreases due to increases in the average unit cost. Thirdly, when the intrinsic growth rate of yellow croaker increases, the optimal harvest, fishing efforts, and stock level all continuously increase. In conclusion, this study suggests that the optimal harvesting production and fishing efforts were much less than actual harvesting production(35,279 ton) and estimated standardized fishing efforts(175,512 horse power) in 2013. This result implies that yellow croaker has been overfished due to excessive fishing efforts. Efficient management and conservative policy on stock of yellow croaker need to be urgently implemented.

Investigation of Proper Spring Harvesting Methods on the Summer Planted Asparagus (Asparagus officinalis L.) in Jeju (제주에서 여름정식한 아스파라거스의 이듬해 적정 수확방법 구명)

  • Seong, Ki-Cheol;Kim, Chun-Hwan;Lee, Jin-Su;Moon, Doo-Kyong;Kang, Kyeong-Hee;Eum, Young-Cheol
    • Journal of Bio-Environment Control
    • /
    • v.18 no.3
    • /
    • pp.280-284
    • /
    • 2009
  • One of the big obstacles to cultivate asparagus was long days taking before first harvesting. This study was carried out to hasten the first harvesting of summer planted asparagus in Jeju. Seedlings were raised for three months and planted June 20th in green house. Harvesting of Spring were separated into non-harvested (control) and harvested (partly-harvesting, completely-harvesting). The first year we could harvest $399kg{\sim}400kg/10a$ in harvesting treatment. Second year's yield was 834kg/10a in partly-harvesting, 825kg/10a in completely-harvesting treatment and 908kg/10a in control. There is no significant difference in second years yield regardless of first year's harvesting methods. The accumulated total yield was increased by 35% (l,229kg/10a) in harvesting treatment from the first spring compared with the control. Marketable yield was increased by 33% (1,116kg/10a) compared with non harvesting in first year (839kg/10a). The result of this study shows that doing harvest of the first year's spring in summer planting asparagus would be desirable for yield and possible to harvest after 8 months planting.

Estimation of Optimum Capacity for Rainwater Storage Facilities based on Mass Balance and Economic Analysis (Mass-balance 및 경제성 분석에 의한 빗물저류시설 적정 규모 산정)

  • Kim, Youngmin;Lee, Sangho;Lee, Jung-Hun;Kim, Ree-Ho
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.22 no.2
    • /
    • pp.233-238
    • /
    • 2008
  • Recently, rainwater harvesting facilities have increasingly constructed mainly in elementary schools and government buildings. Nevertheless, few methods are available for efficient planning and design of rainwater harvesting facilities by considering the weather conditions and purpose of rainwater management in each site, which may lead to a construction of uneconomic facilities. The current method estimates the size of rainwater storage tank by multiplying the size of building or plottage with a certain ratio and has many limitations. In this study, we first developed a method for planning and design of rainwater storage facilities using $Rainstock^{TM}$ model, which is based on mass balance, and economic analysis. Then, the model was applied for the design of a rainwater harvesting facility in a building with the catchment area of $1,000m^2$. The model calculation indicated that the economic feasibility of rainwater harvesting depends on not only the size of storage tank but also the water usage rate. When the water usage rate is $1m^3/day$, the rainwater harvesting facility is not cost-effective regardless of the size of the storage tank. With increasing the water usage rate, the economical efficiency of the facility was improved for a specific size of the storage tank. Based on the model calculation, the optimum tank sizes for $5m^3/day$ and $10m^3/day$ of water usage rates were $24m^3$ and $57m^3$, respectively. It is expected that the model is useful for optimization of rainwater storage facilities in planning and designing steps.

Apple detection dataset with visibility and deep learning detection using adaptive heatmap regression (가시성을 표시한 사과 검출 데이터셋과 적응형 히트맵 회귀를 이용한 딥러닝 검출)

  • Tae-Woong Yoo;Dasom Seo;Minwoo Kim;Seul Ki Lee;Il-Seok, Oh
    • Smart Media Journal
    • /
    • v.12 no.10
    • /
    • pp.19-28
    • /
    • 2023
  • In the fruit harvesting field, interest in automatic robot harvesting is increasing due to various seasonality and rising harvesting costs. Accurate apple detection is a difficult problem in complex orchard environments with changes in light, vibrations caused by wind, and occlusion of leaves and branches. In this paper, we introduce a dataset and an adaptive heatmap regression model that are advantageous for robot automatic apple harvesting. The apple dataset was labeled with not only the apple location but also the visibility. We propose a method to detect the center point of an apple using an adaptive heatmap regression model that adjusts the Gaussian shape according to visibility. The experimental results showed that the performance of the proposed method was applicable to apple harvesting robots, with MAP@K of 0.9809 and 0.9801 when K=5 and K=10, respectively.

Effects of First Harvest Methods on Growth and Yield in Saururus chinensis Baill (1차 수확정도가 삼백초의 생육 및 수량에 미치는 영향)

  • Nam, Sang-Young;Kim, In-Jae;Kim, Min-Ja;Yun, Tae;Lee, Cheol-Hee
    • Korean Journal of Plant Resources
    • /
    • v.20 no.2
    • /
    • pp.125-128
    • /
    • 2007
  • Plan stability production investigating 1st harvesting degree for maximum leaf quantity enlargement, is as following it summarize result that test for 3 years since 2002 allowing 4 processing such as trunk lower column department harvesting, Foliar and rhizoma growth were tendency that give protective care 1 st harvesting height is short, but there were many the number of tillering crawl, Distribution of rhizome about diameter 5mm low 58%, large rhizome's ratio was high tendency harvesting height is short. Because foliar amount is much harvesting height is short in ground department, 15% rose in soil surface harvesting since 292kg provision per 5cm harvesting 10a, The time of refining the harvest of stems and leaves before drying has reduced when the height of the harvest is low, and the 5cm harvest has decreased 30% compared to the soil surface harvest.

Design of a Vibration-Powered Piezoelectric Energy-Harvesting Module by Considering Variations in Excitation Frequency (외부 가진 가변 주파수를 고려한 압전 진동 에너지 수확 모듈의 설계)

  • Kim, Jae-Eun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.5
    • /
    • pp.637-644
    • /
    • 2010
  • A vibration-powered piezoelectric energy harvester yields the maximum power output when its resonant frequency is made equal to the excitation frequency; however, the power output is dramatically decreased when the energy harvester is operated at off-resonance frequency. It has been observed that the resonant frequency of a piezoelectric energy harvester may change with time and that the excitation frequency often varies when the energy harvester is used in real applications. Hence, in this study, we propose a piezoelectric energy-harvesting module that is suitable for excitations in a certain frequency range. The frequency characteristics of the electrical output of the module are studied through analysis and experiment. A simple frequency tuning method is also suggested for the proposed energy-harvesting module; in this method, frequency tuning is achieved by changing the electrical connections between the constituent energy-harvesting units of the module.

Effects of impact by mechanical harvesting on storability of onions (Allium cepa L.) (기계수확 시 발생한 충격이 양파(Allium cepa L.)의 저장성에 미치는 영향)

  • Young-Kyeong Kwon;Yong-Jae Lee
    • Food Science and Preservation
    • /
    • v.30 no.5
    • /
    • pp.811-821
    • /
    • 2023
  • This study investigated the storability of onions according to manual and mechanical harvesting. Moreover, we simulated the onion-to-onion impact during the mechanical harvesting process and investigated the storability after artificially subjecting the onions to impact treatment. The onion harvesting methods included hand plucking + manual collection, digger + manual, and digger + mechanical collection. The maximum impact height during the mechanical harvesting process was 0.5 m. Immediately after harvesting, no significant difference in the bruise and wound rate among the harvesting methods was observed. Any increased bruise or wound rate because of mechanical harvesting was presumed to be influenced by soil conditions, such as the presence of gravel, and machine operation factors. Furthermore, the storability during the 8.5 months storage showed no significant difference according to the harvesting methods. In treatments by simulating the impacts during the mechanical harvesting process, the impact heights were 0.0 m (0.0 J), 0.25 m (0.86 J), 0.5 m (1.72 J), and 0.75 m (2.57 J), each performed once, and four times at the same position (3.43 J) and four times at different positions (3.43 J) at 0.25 m. Throughout all the treatments, there were no significant differences in the storability during the 8.5 months storage period.