• Title/Summary/Keyword: Harvesting method

Search Result 509, Processing Time 0.029 seconds

System Reliability Analysis for Multiple Failure Modes of Piezoelectric Energy Harvester Using Generalized Complementary Intersection Method (Generalized Complementary Intersection Method를 이용한 압전 에너지 수확 장치의 다중 파손모드에 대한 시스템 신뢰성 해석)

  • Yoon, Heonjun;Youn, Byeng D.;Kim, Heung-Soo
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2014.10a
    • /
    • pp.544-544
    • /
    • 2014
  • Energy harvesting technology, which scavenges electric power from ambient, otherwise wasted, energy sources, has been explored to develop self-powered wireless sensors and possibly eliminate the battery replacement cost for wireless sensors. Among ambient energy sources, vibration energy can be converted into electric power through a piezoelectric energy harvester. For the last decade, although tremendous advances have been made in design methodology to maximize harvestable electric power under a given vibration condition, the research in reliability assessment to ensure durability has been stagnant due to the complicated nature of the multiple failure modes of a piezoelectric energy harvester, such as the interfacial delamination, fatigue failure, and dynamic fracture. Therefore, this study presents the first-ever system reliability analysis for multiple failure modes of a piezoelectric energy harvester using the Generalized Complementary Intersection Method (GCIM), while accounts for the energy conversion performance. The GCIM enables to decompose the probabilities of high-order joint failure events into probabilities of complementary intersection events. The electromechanically-coupled analytical model is implemented based on the Kirchhoff plate theory to analyze its output performances of a piezoelectric energy harvester. Since a durable as well as efficient design of a piezoelectric energy harvester is significantly important in sustainably utilizing self-powered electronics, we believe that technical development on system reliability analysis will have an immediate and major impact on piezoelectric energy harvesting technology.

  • PDF

A Study on Efficient Improvement Method of Rainwater Utilization Facilities in Jeju Island (제주지역 빗물이용시설의 효율적 개선방안 연구)

  • Park, Won-Bae;Moon, Deok-Cheol;Koh, Gi Won
    • Journal of Soil and Groundwater Environment
    • /
    • v.17 no.6
    • /
    • pp.1-8
    • /
    • 2012
  • This study is to suggest a few efficient ways of rainwater utilization, through monitoring and analyzing 143 rainwater storage systems and 110 artificial recharge systems, which are installed in the recommended facilities by law, among the rainwater harvesting systems in Jeju Island. In the case that catchment facilities are damaged, rainwater could be contaminated by leaves and debris so that the rates of rainwater usages come to be lower. It is possible that contaminated rainwater could contaminate artificial recharge wells or rainwater discharging out of the rainwater harvesting system could result in flood and damage for the downgradient area. For maintaining high quality of rainwater and increasing rainwater utilization rate, it is necessary to install screening facilities and purification plant functioning precipitation and filtration. Also, in order to efficiently preclude the overflowing rainwater exceeding storage capacity, it is recommended to associate rainwater storage tanks with artificial recharge well or infiltration trench facilities.

Partially Asynchronous Task Planning for Dual Arm Manipulators (양팔 로봇을 위한 부분적 비동기 작업 계획)

  • Chung, Seong Youb;Hwang, Myun Joong
    • The Journal of Korea Robotics Society
    • /
    • v.15 no.2
    • /
    • pp.100-106
    • /
    • 2020
  • In the agricultural field, interests in research using robots for fruit harvesting are continuously increasing. Dual arm manipulators are promising because of its abilities like task-distribution and role-sharing. To operate it efficiently, the task sequence must be planned adequately. In our previous study, a collision-free path planning method based on a genetic algorithm is proposed for dual arm manipulators doing tasks cooperatively. However, in order to simplify the complicated collision-check problem, the movement between tasks of two robots should be synchronized, and thus there is a problem that the robots must wait and resume their movement. In this paper, we propose a heuristic algorithm that can reduce the total time of the optimal solution obtained by using the previously proposed genetic algorithm. It iteratively desynchronizes the task sequence of two robots and reduces the waiting time. For evaluation, the proposed algorithm is applied to the same work as the previous study. As a result, we can obtain a faster solution having 22.57 s than that of the previous study having 24.081 s. It will be further studied to apply the proposed algorithm to the fruit harvesting.

Development of Welsh Onion Harvester for Tractor

  • Hong, Sungha;Lee, Kyouseung;Cho, Yongjin;Park, Wonyeop
    • Journal of Biosystems Engineering
    • /
    • v.39 no.4
    • /
    • pp.290-298
    • /
    • 2014
  • Purpose: To ascertain the increase of the farm income that predominantly relies on human resources by mechanizing Welsh onion harvesting, a tractor-mounted Welsh onion harvester was developed in this study. Method: An experiment for evaluating harvesting performance was performed for the developed Welsh onion harvester in an actual Welsh onion farm. The harvest performance was evaluated at the tractor running speeds of 5.0 cm/s, 11.4 cm/s and 15.8 cm/s, by comparing the operating efficiency, harvest rate, and damage rate of the Welsh onion harvester. Results: The performance of the harvester was rated as very good, with a 100% harvest rate, regardless of tractor running speed. Furthermore, it is shown that work efficiency of the harvester is expected to increase as the running speed increases. Nonetheless, the damage rate of the harvested Welsh onions at running speeds 5.0 cm/s, 11.4 cm/s, and 15.8 cm/s, increased correspondingly and proportionally to speeds from 4.55% to 6.53% and to 11.29%. The residual amount of soil on the harvested Welsh onions was about 0.24% of their weight showing excellent soil-removal performance of the harvester. Conclusion: The developed Welsh onion harvester is believed to improve the labor productivity and cultivation environment of Welsh onion farmhouses by the mechanization of the harvesting process that is currently associated with the largest amount of labor hours.

Research on the Efficiency Improvement of the Cymbal-type Piezoelectric Energy Harvester (심벌형 압전 에너지 하베스터 에너지 수율 향상 연구)

  • Na, Yeong-Min;Park, Jong-Kyu
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.16 no.1
    • /
    • pp.70-76
    • /
    • 2017
  • The pollution problem of fossil energy sources has caused the development of green energy harvesting systems. Piezoelectric energy harvesting technology has been developed under those external environmental factors. A piezoelectric energy harvester can be defined as a device which transforms mechanical vibration or impact energy into electrical energy. Most researches have focused on bender structures. However, these have a limitation on energy efficiency because of the small effective electromechanical coupling factor, around 10%. Therefore, we should look for a new design for energy harvesting. A cymbal energy harvester can be a good candidate for the high-power energy harvester because it uses a high amplification mechanism using endcaps while keeping a higher electromechanical coupling factor. In this research, we focused on energy efficiency improvements of the cymbal energy harvester by changing the polarization direction, because the electromechanical coupling factor of the k33 mode and the k15 mode is larger than that of the k31 mode. Theoretically, we checked the cymbal harvester with radial polarization and it could obtain 6 times larger energy than that with the k31 direction polarization. Furthermore, we verified the theoretical expectation using the finite element method program. Consequently, we could expect a more efficient cymbal harvester with the radial polarization by comparing two polarization directions.

A Study on Energy Harvesting Technique using Piezoelectric Element (압전소자를 이용한 에너지 수확에 관한 연구)

  • Yun, S.N.;Kim, D.G.
    • Journal of Power System Engineering
    • /
    • v.13 no.3
    • /
    • pp.65-71
    • /
    • 2009
  • This paper presents the energy harvesting technique which is carried out by vibration system with a piezoelectric element. In this study, low frequency characteristics of the piezoelectric element bonded to the aluminum cantilever were experimentally investigated. The piezoelectric element of size of $45L{\times}11W{\times}0.6H$ and piezoelectric constant($d_{31}$ ) of $-180{\times}10^{-12}C/N$ was used. The material of cantilever is an aluminum and two kinds of cantilever of which dimensions are (150, 190)$[mm]{\times}13[mm]{\times}1.5[mm]$ were experimented, respectively. The cantilever was fixed on the magnetic type vibrator and the vibrator was operated by power input with a sine wave. The characteristics of requency and mass variation of cantilever end part such as 0, 2.22, 4.34, 5.87, 8.66, 11.01 [g] were investigated. Finally, this paper suggests a method of generating electrical energy with a piezoelectric element using wind, an energy source that is easily applied and from which we can obtain "clean" energy.

  • PDF

Broadband Piezoelectric Energy Harvesting Technology (광대역 압전 에너지 하베스팅 기술)

  • Lee, Dong-Gyu;Yee, Yeon-Jeong;Song, Hyun-Cheol
    • Ceramist
    • /
    • v.22 no.1
    • /
    • pp.56-69
    • /
    • 2019
  • Recent advances in low-power sensors and transmitters are driving the search for standalone power sources that utilize unused ambient energy. These energy harvesters can alleviate the issues related to the installation and maintenance of sensors. Particularly piezoelectric energy harvesters, with the ability to convert ambient mechanical energy into useful electricity, have received significant attention due to their high energy density, low cost and operational stability over wide temperature and pressure conditions. In order to maximize the generated electrical power, the natural frequency of the piezoelectric energy harvester should be matched with the dominant frequency of ambient vibrations. However, piezoelectric energy harvesters typically exhibit a narrow bandwidth, thus, it becomes difficult to operate near resonance under broadband ambient vibration conditions. Therefore, the resonating of energy harvesters is critical to generate maximum output power under ambient vibration conditions. For this, energy harvesters should have broadband natural frequency or actively tunable natural frequency with ambient vibrations. Here, we review the most plausible broadband energy harvesting techniques of the multi-resonance, nonlinearity, and self-resonance tuning. The operation mechanisms and recent representative studies of each technique are introduced and the advantages and disadvantages of each method are discussed. In addition, we look into the future research direction for the broadband energy harvester.

Real-Time Tomato Instance Tracking Algorithm by using Deep Learning and Probability Model (딥러닝과 확률모델을 이용한 실시간 토마토 개체 추적 알고리즘)

  • Ko, KwangEun;Park, Hyun Ji;Jang, In Hoon
    • The Journal of Korea Robotics Society
    • /
    • v.16 no.1
    • /
    • pp.49-55
    • /
    • 2021
  • Recently, a smart farm technology is drawing attention as an alternative to the decline of farm labor population problems due to the aging society. Especially, there is an increasing demand for automatic harvesting system that can be commercialized in the market. Pre-harvest crop detection is the most important issue for the harvesting robot system in a real-world environment. In this paper, we proposed a real-time tomato instance tracking algorithm by using deep learning and probability models. In general, It is hard to keep track of the same tomato instance between successive frames, because the tomato growing environment is disturbed by the change of lighting condition and a background clutter without a stochastic approach. Therefore, this work suggests that individual tomato object detection for each frame is conducted by YOLOv3 model, and the continuous instance tracking between frames is performed by Kalman filter and probability model. We have verified the performance of the proposed method, an experiment was shown a good result in real-world test data.

A Novel Routing Structure Method For Data Aggregation Scheduling in Battery-Free Wireless Sensor Networks (무배터리 무선 센서 네트워크에서의 데이터 집적 스케줄링에 관한 새로운 라우팅 구조 방법)

  • Vo, Van-Vi;Kim, Moonseong;Choo, Hyunseung
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2022.05a
    • /
    • pp.94-97
    • /
    • 2022
  • The emerging energy harvesting technology, which has been successfully integrated into Wireless Sensor Networks, enables sensor batteries to be charged using renewable energy sources. In the meantime, the problem of Minimum Latency Aggregation Scheduling (MLAS) in battery-powered WSNs has been well studied. However, because sensors have limited energy harvesting capabilities, captured energy is limited and varies greatly between nodes. As a result, all previous MLAS algorithms are incompatible with Battery-Free Wireless Sensor Networks (BF-WSNs). We investigate the MLAS problem in BF-WSNs in this paper. To make the best use of the harvested energy, we build an aggregation tree that leverages the energy harvesting rates of the sensor nodes with an intuitive explanation. The aggregation tree, which determines sender-receiver pairs for data transmission, is one of the two important phases to obtain a low data aggregation latency in the BF-WSNs.

A Calculation Method of in vivo Energy Consumption in Estimation of Harvesting Date for High Potato Solids (고 고형분함량 감자의 수확시기 예측모형을 위한 식물체내 에너지 소모량 추정)

  • Jung, Jae-Youn;Suh, Sang-Gon
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.55 no.4
    • /
    • pp.284-291
    • /
    • 2010
  • A simulation modeling for predicting the harvesting date with high potato solids consists of development of mathematical models. The mathematical model on potato growth and its development should be obtained by using agricultural elements which analyze relations of solar radiation quantity, temperature, photon quantity, carbon dioxide exchange rate, water stress and loss, relative humidity, light intensity, and wind etc. But more reliable way to predict harvesting date against climatic change employs in vivo energy consumption for growth and induction shape in a slight environmental adaptation. Therefore, to calculate in vivo energy loss, we take a concept of estimate of the amount of basal metabolism in each tuber on the basis of $Wm={\int}^m_tf(x)dt$ and $Tp=\frac{Tm{\cdot}Wm^{Tp}}{Wm^{Tm}}$. In the validation experiments, results of measuring solid accumulation of potato harvested at simulated date agreed fairly well with the actual measured values in each regional field during the growth period of 2005-2009. The calculation method could be used to predict an appropriate harvesting date for a production of high potato solids according to weather conditions.