• Title/Summary/Keyword: Harvesting Frequency

Search Result 194, Processing Time 0.036 seconds

A Study on Energy Harvesting Technique using Piezoelectric Element (압전소자를 이용한 에너지 수확에 관한 연구)

  • Yun, S.N.;Kim, D.G.
    • Journal of Power System Engineering
    • /
    • v.13 no.3
    • /
    • pp.65-71
    • /
    • 2009
  • This paper presents the energy harvesting technique which is carried out by vibration system with a piezoelectric element. In this study, low frequency characteristics of the piezoelectric element bonded to the aluminum cantilever were experimentally investigated. The piezoelectric element of size of $45L{\times}11W{\times}0.6H$ and piezoelectric constant($d_{31}$ ) of $-180{\times}10^{-12}C/N$ was used. The material of cantilever is an aluminum and two kinds of cantilever of which dimensions are (150, 190)$[mm]{\times}13[mm]{\times}1.5[mm]$ were experimented, respectively. The cantilever was fixed on the magnetic type vibrator and the vibrator was operated by power input with a sine wave. The characteristics of requency and mass variation of cantilever end part such as 0, 2.22, 4.34, 5.87, 8.66, 11.01 [g] were investigated. Finally, this paper suggests a method of generating electrical energy with a piezoelectric element using wind, an energy source that is easily applied and from which we can obtain "clean" energy.

  • PDF

Development of Chain Conveyor-type Spinach Harvester

  • Jun H. J.;Hong J. T.;Choi Y.;Kim Y. K.
    • Agricultural and Biosystems Engineering
    • /
    • v.5 no.2
    • /
    • pp.40-44
    • /
    • 2004
  • This study was conducted to solve the problem of spinach harvesting done by manpower at the outdoor field during the cold winter season. Prototype spinach harvester was designed to dig, pick-up, and collect in a continuous operation for harvesting outdoor field-planted crawling type spinach. In the field test, two types of blades (Type A : angle of $150^{\circ}$, Type B : straight) were used for measuring the cutting loads of spinach and chain conveyor with lugs was used for picking up the root cut spinach. Prototype's vibrating blade reduced the digging power of the fixed blade by $46\%$. The loss was also very little ($0.7\%$) with a digging depth of 4 cm, an oscillation frequency of 748 rpm, and an oscillation distance of 33 mm. The working performance of the prototype spinach harvester was 38 hour/ha resulting to $96\%$ labor cost reduction compared to the conventional harvesting.

  • PDF

Micro-scale Photo Energy Harvesting System with a New MPPT control (새로운 MPPT 제어기능을 갖는 마이크로 빛에너지 하베스팅 회로)

  • Yoon, Il-young;Choi, Sun-myung;Park, Youn-soo;Yoon, Eun-jung;Yu, Chong-gun
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2013.10a
    • /
    • pp.379-382
    • /
    • 2013
  • In conventional solar energy harvesting systems, continuous perturbation techniques of the duty cycle or switching frequency of a power converter have been used to implement MPPT(Maximum Power Point Tracking) control. In this paper, we propose a new MPPT technique to control the duty cycle of a power switch powering a power converter. The proposed circuit is designed in 0.35um CMOS process, and the designed chip area including pads is $770um{\times}800um$.

  • PDF

A Study on Energy Harvester with Cantilever Structure Using PZT Piezoelectric Material (PZT 압전재료를 이용한 외팔보 구조의 에너지 수집기에 관한 연구)

  • Cha, Doo-Yeol;Lee, Soo-Jin;Chang, Sung-Pil
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.24 no.5
    • /
    • pp.416-421
    • /
    • 2011
  • Nowadays, the increasing demands upon mobile devices such as wireless sensor networks and the recent advent of low power electrical devices such as MEMS make such renewable power sources attractive. A vibration-driven MEMS lead zirconate titanate $Pb(Zr,Ti)O_3$ (PZT) cantilever device is developed for energy harvesting application. This paper presents a piezoelectric based energy harvester which is suitable for power generating from conventional vibration and has in providing energy for low power electron ic devices. The PZT cantilever is used d33 mode to get the electrical power. The PZT cantilever based energy harvester with the dimension of 7 mm${\times}$3 mm${\times}$0.03 mm is fabricated using micromachining technologies. This PZT cantilever has the mechanical resonance frequency with a 900 Hz. With these conditions, we get experimentally the 37 uW output power from this device with the application of 1g acceleration using the 900 Hz vibration. From this study, we show the feasibility of one of energy harvesting candidates using PZT based structure. This PZT energy harvester could be used for various applications such a batteryless micro sensors and micro power generators.

Design and Fabrication of a PZT cantilever for low resonant frequency energy harvesting (낮은 공진 주파수를 갖는 PZT 외팔보 에너지 수확소자의 설계 및 제작)

  • Kim, Moon-Keun;Hwang, Beom-Seok;Seo, Won-Jin;Choi, Seung-Min;Jeong, Jae-Hwa;Kwon, Kwang-Ho
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2010.06a
    • /
    • pp.228-228
    • /
    • 2010
  • 본 연구에서는 공진주파수 수식을 이용한 MATLAB과 Modal 해석법을 사용한 ANSYS로 공진주파수 특성을 시뮬레이션 하였다. 외팔보의 시뮬레이션 결과에서는 길이가 길어짐에 따라, 또는 proof mass의 크기가 커짐에따라 공진주파수 특성이 낮아지는 결과가 나타났다. 따라서 본 실험에서의 외팔보는 낮은 공진 주파수를 가지기 위해 Si proof mass를 사용하여 제작하였다. 외팔보 소자는 Silicon-on-insulator wafer를 사용하여 SiO2/Ti/Pt/PZT/Pt 박막을 증착하였고, 마스크를 사용한 식각 공정으로 제작하였다. 이때의 MATLAB, ANSYS 시뮬레이션 결과와 실험에서 제작된 소자는 유사한 공진주파수 특성을 나타내었다.

  • PDF

Chaff-outlet Grain Loss of Head-feed Combine -Development of a Monitor for Detecting Chaff-outlet Grain Loss of Head-feed Combine- (자탈형(自脱型) 콤바인의 배진손실(排塵損失)에 관(關)한 연구(硏究)(I) -자탈형(自脱型) 콤바인의 배진손실(排塵損失) 모니터 개발-)

  • Chung, C.J.;Choe, J.S.;Choi, Y.S.
    • Journal of Biosystems Engineering
    • /
    • v.14 no.4
    • /
    • pp.251-261
    • /
    • 1989
  • The amount of grain loss incurred during harvesting operation through the chaff-outlet of combine may not be negligible. To minimize this grain loss and optimize condition of combining, it may be necessary that the amount of chaff-outlet loss dependent on varying crop condition is to be estimated as exactly as possible. This study was thus intended to develop the monitor that could indicate the amount of grain loss occurred through the chaff-outlet of combine during harvesting operation. The function of this monitor is to measure at the sounding board the impact sound of paddy kernels which could be distinguished from those of other threshing products through chaff-outlet, and from vibration or noise created by the combine engine and other moving parts. To develop such monitor, the frequency distributions of each sound generated by the impact of grain and chaff, the sound generated by the impact of the mixture of grain and chaff, and vibration or noise created by the combine engine and other moving parts were investigated experimentally. From the results of frequency analyses, the trainsducer adequate for the monitering system was selected and sounding board was constructed. The grain loss monitor thus obtained was tested by attaching the sounding board to the chaff-outlet of combine.

  • PDF

A study of DSC using Ultrasonic and Thermal treatment on Photo-Electrode (염료감응형 태양전지 광전극 초음파 열처리에 관한 연구)

  • Hong, Ji-Tae;Kim, Mi-Jeong;Sim, Ji-Yong;Seo, Hyun-Woong;Kim, Hee-Je
    • Proceedings of the KIEE Conference
    • /
    • 2007.07a
    • /
    • pp.1291-1292
    • /
    • 2007
  • Recently, there were many researches for efficiency improvement of DSC. Among of these works, research of surface treatment is still a prerequisite for electron diffusion, light-harvesting and surface state of DSC.[1] Using of the surface treatment, it can be raise up porosity of $TiO_2$ nano-crystalline structure on photo-electrode. There are chemical, physical, electrical and optical methods which raise up its porosity. In this paper, we have designed and manufactured MOPA-type ultrasonic circuit (100W, frequency and duty variable). Manufactured ultrasonic circuit to use to force cavity density and power into $TiO_2$ paste. Then, we have optimized forcing time, frequency and duty of ultrasonic irradiation for surface treatment of photo-electrode of DSC. In I-V characteristic test of DSC, ultrasonic and thermal treated DSC shows 19% improved its efficiency against monolithic DSC. And it shows stability of light-harvesting from drastically change of light irradiation test.

  • PDF

Joint Optimization for Residual Energy Maximization in Wireless Powered Mobile-Edge Computing Systems

  • Liu, Peng;Xu, Gaochao;Yang, Kun;Wang, Kezhi;Li, Yang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.12
    • /
    • pp.5614-5633
    • /
    • 2018
  • Mobile Edge Computing (MEC) and Wireless Power Transfer (WPT) are both recognized as promising techniques, one is for solving the resource insufficient of mobile devices and the other is for powering the mobile device. Naturally, by integrating the two techniques, task will be capable of being executed by the harvested energy which makes it possible that less intrinsic energy consumption for task execution. However, this innovative integration is facing several challenges inevitably. In this paper, we aim at prolonging the battery life of mobile device for which we need to maximize the harvested energy and minimize the consumed energy simultaneously, which is formulated as residual energy maximization (REM) problem where the offloading ratio, energy harvesting time, CPU frequency and transmission power of mobile device are all considered as key factors. To this end, we jointly optimize the offloading ratio, energy harvesting time, CPU frequency and transmission power of mobile device to solve the REM problem. Furthermore, we propose an efficient convex optimization and sequential unconstrained minimization technique based combining method to solve the formulated multi-constrained nonlinear optimization problem. The result shows that our joint optimization outperforms the single optimization on REM problem. Besides, the proposed algorithm is more efficiency.

Real-time implementation of distributed beamforming for simultaneous wireless information and power transfer in interference channels

  • Hong, Yong-Gi;Hwang, SeongJun;Seo, Jiho;Lee, Jonghyeok;Park, Jaehyun
    • ETRI Journal
    • /
    • v.43 no.3
    • /
    • pp.389-399
    • /
    • 2021
  • In this paper, we propose one-bit feedback-based distributed beamforming (DBF) techniques for simultaneous wireless information and power transfer in interference channels where the information transfer and power transfer networks coexist in the same frequency spectrum band. In a power transfer network, multiple distributed energy transmission nodes transmit their energy signals to a single energy receiving node capable of harvesting wireless radio frequency energy. Here, by considering the Internet-of-Things sensor network, the energy harvesting/information decoding receivers (ERx/IRx) can report their status (which may include the received signal strength, interference, and channel state information) through one-bit feedback channels. To maximize the amount of energy transferred to the ERx and simultaneously minimize the interference to the IRx, we developed a DBF technique based on one-bit feedback from the ERx/IRx without sharing the information among distributed transmit nodes. Finally, the proposed DBF algorithm in the interference channel is verified through the simulations and also implemented in real time by using GNU radio and universal software radio peripheral.

Predictive control and modeling of a point absorber wave energy harvesting connected to the grid using a LPMSG-based power converter

  • Abderrahmane Berkani;Mofareh Hassan Ghazwani;Karim Negadi;Lazreg Hadji;Ali Alnujaie;Hassan Ali Ghazwani
    • Ocean Systems Engineering
    • /
    • v.14 no.1
    • /
    • pp.17-52
    • /
    • 2024
  • In this paper, the authors explore the modeling and control of a point absorber wave energy converter, which is connected to the electric grid via a power converter that is based on a linear permanent magnet synchronous generator (LPMSG). The device utilizes a buoyant mechanism to convert the energy of ocean waves into electrical power, and the LPMSG-based power converter is utilized to change the variable frequency and voltage output from the wave energy converter to a fixed frequency and voltage suitable for the electric grid. The article concentrates on the creation of a predictive control system that regulates the speed, voltage, and current of the LPMSG, and the modeling of the system to simulate its behavior and optimize its design. The predictive model control is created to guarantee maximum energy output and stable grid connection, using Matlab Simulink to validate the proposed strategy, including control side generator and predictive current grid-side converter loops.