• Title/Summary/Keyword: Harvester Method

Search Result 68, Processing Time 0.03 seconds

Development of a Walking Garlic Harvester with Pulling Mechanism (보행형 인발식 마늘수확기 개발)

  • 노광모;장영창;박준걸;용상호
    • Journal of Biosystems Engineering
    • /
    • v.27 no.6
    • /
    • pp.513-520
    • /
    • 2002
  • A 5-row walking garlic harvester with pulling mechanism was developed in the study, based upon a kinematical analysis and related preliminary field tests on the conventional garlic harvesting method. The harvesting efficiency of the developed harvester was more than 98% in the garlic field irrigated before harvesting, 80-85% in the field without irrigation. The harvesting performance of the harvester was 660∼825㎡/hr at the forward speed of harvester of 0.3m/s in the irrigated field before garlic harvesting. For proper garlic drying and collection, the harvester discharged the harvested garlic on the ground uniformly at the angles of 135。∼150。 to its forward direction with the garlic bulb's placing toward the harvester. In the field tests, it was recommended that the forward speed of the harvester be approximately less than 0.2m/s, and that the spacing of planting garlic seeds should be standardized in the future fur increasing its harvesting efficiency.

BASIS RESEARCH ON NOISE CONTROL OF HEAD-FEEDING TYPE COMBINE HARVESTER USING SOUND INTENSITY METHOD

  • Sasao, A.;Iwasa, M.
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 1993.10a
    • /
    • pp.752-760
    • /
    • 1993
  • We research ed on the noise control of a head feeding type combine harvester. It is a kind of combine harvester developed in Japan. And at present, it is used by most Japanese farmer. For a head-feeding type combine harvester it is very difficult to determine the sources of noise because it is a combination of reapers and automatic , threshers and several running parts. However we succeeded in finding out the sound sources of combine harvesters and analyzing their sound by the using sound intensity method. The sound intensity Method is a very up-to-date method to measure and analyze Sound Intensity Levels and sound directions at several measuring point sin a specified area. In this research, first a conventional sound level measurement method is used and secondly the sound intensity method. The first method shows a rather great limitation in allowed exposure duration. The second method shows pin-points the engine itself as being the main source of noise, causing sound flows a ross the operator's seat.

  • PDF

Application of Open Source, Big Data Platform to Optimal Energy Harvester Design (오픈소스 기반 빅데이터 플랫폼의 에너지 하베스터 최적설계 적용 연구)

  • Yu, Eun-seop;Kim, Seok-Chan;Lee, Hanmin;Mun, Duhwan
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.17 no.2
    • /
    • pp.1-7
    • /
    • 2018
  • Recently, as interest in the internet of things has increased, a vibration energy harvester has attracted attention as a power supply method for a wireless sensor. The vibration energy harvester can be divided into piezoelectric types, electromagnetic type and electrostatic type, according to the energy conversion type. The electromagnetic vibration energy harvester has advantages, in terms of output density and design flexibility, compared to other methods. The efficiency of an electromagnetic vibration energy harvester is determined by the shape, size, and spacing of coils and magnets. Generating all the experimental cases is expensive, in terms of time and money. This study proposes a method to perform design optimization of an electromagnetic vibration energy harvester using an open source, big data platform.

Development of Welsh Onion Harvester for Tractor

  • Hong, Sungha;Lee, Kyouseung;Cho, Yongjin;Park, Wonyeop
    • Journal of Biosystems Engineering
    • /
    • v.39 no.4
    • /
    • pp.290-298
    • /
    • 2014
  • Purpose: To ascertain the increase of the farm income that predominantly relies on human resources by mechanizing Welsh onion harvesting, a tractor-mounted Welsh onion harvester was developed in this study. Method: An experiment for evaluating harvesting performance was performed for the developed Welsh onion harvester in an actual Welsh onion farm. The harvest performance was evaluated at the tractor running speeds of 5.0 cm/s, 11.4 cm/s and 15.8 cm/s, by comparing the operating efficiency, harvest rate, and damage rate of the Welsh onion harvester. Results: The performance of the harvester was rated as very good, with a 100% harvest rate, regardless of tractor running speed. Furthermore, it is shown that work efficiency of the harvester is expected to increase as the running speed increases. Nonetheless, the damage rate of the harvested Welsh onions at running speeds 5.0 cm/s, 11.4 cm/s, and 15.8 cm/s, increased correspondingly and proportionally to speeds from 4.55% to 6.53% and to 11.29%. The residual amount of soil on the harvested Welsh onions was about 0.24% of their weight showing excellent soil-removal performance of the harvester. Conclusion: The developed Welsh onion harvester is believed to improve the labor productivity and cultivation environment of Welsh onion farmhouses by the mechanization of the harvesting process that is currently associated with the largest amount of labor hours.

Design method for the 2DOF electromagnetic vibrational energy harvester

  • Park, Shi-Baek;Jang, Seon-Jun
    • Smart Structures and Systems
    • /
    • v.25 no.4
    • /
    • pp.393-399
    • /
    • 2020
  • In this paper, the design method and experimental validation for the two-degree-of-freedom (2DOF) electromagnetic energy harvester are presented. The harvester consists of the rigid body suspended by four tension springs and electromagnetic transducers. Once the two resonant frequencies and the mass properties are specified, both the constant and the positions for the springs can be determined in the closed form. The designed harvester can locate two resonant peaks close to each other and forms the extended frequency bandwidth for power harvesting. Halbach magnet array is also introduced to enhance the output power. In the experiment, two resonant frequencies are measured at 34.9 and 37.6 Hz and the frequency bandwidth improves to 5 Hz at the voltage level of 207.9 mV. The normalized peak power of 4.587 mW/G2 is obtained at the optimal load resistor of 367 Ω.

Research on the Efficiency Improvement of the Cymbal-type Piezoelectric Energy Harvester (심벌형 압전 에너지 하베스터 에너지 수율 향상 연구)

  • Na, Yeong-Min;Park, Jong-Kyu
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.16 no.1
    • /
    • pp.70-76
    • /
    • 2017
  • The pollution problem of fossil energy sources has caused the development of green energy harvesting systems. Piezoelectric energy harvesting technology has been developed under those external environmental factors. A piezoelectric energy harvester can be defined as a device which transforms mechanical vibration or impact energy into electrical energy. Most researches have focused on bender structures. However, these have a limitation on energy efficiency because of the small effective electromechanical coupling factor, around 10%. Therefore, we should look for a new design for energy harvesting. A cymbal energy harvester can be a good candidate for the high-power energy harvester because it uses a high amplification mechanism using endcaps while keeping a higher electromechanical coupling factor. In this research, we focused on energy efficiency improvements of the cymbal energy harvester by changing the polarization direction, because the electromechanical coupling factor of the k33 mode and the k15 mode is larger than that of the k31 mode. Theoretically, we checked the cymbal harvester with radial polarization and it could obtain 6 times larger energy than that with the k31 direction polarization. Furthermore, we verified the theoretical expectation using the finite element method program. Consequently, we could expect a more efficient cymbal harvester with the radial polarization by comparing two polarization directions.

Electromechanical Modeling and Analysis of a Multimodal Piezoelectric Energy Harvester Comprising Three Connected Beams (연결된 세 보 구조를 갖는 다모드 압전 에너지 하베스터의 전기-역학적 모델링 및 해석)

  • Jeong, Sin-Woo;Yoo, Hong Hee
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.26 no.4
    • /
    • pp.458-468
    • /
    • 2016
  • Electromechanical model for analyzing a multimodal piezoelectric energy harvester comprising three connected beams is presented in this paper. This system consists of three beams which are connected alternately. The piezoelectric layer is only attached to the middle beam. With this special structural configuration, the first, second, and third natural frequencies are congregated so that the energy harvester can generate meaningful amount of power consistently when the main frequency component of the excitation varies around the lowest three natural frequencies of the harvester. To investigate the dynamic and electric response of the piezoelectric energy harvester, an electromechanical model is developed using the Kane's method and the accuracy of the model is validated by comparing the results obtained with the model with those obtained with the commercial software ANSYS. The results show that the piezoelectric energy harvester comprising three connected beams has much broader power generating frequency range than that of the conventional piezoelectric energy harvester.

Dynamic analysis and performance optimization of permendur cantilevered energy harvester

  • Ghodsi, Mojtaba;Ziaiefar, Hamidreza;Mohammadzaheri, Morteza;Omar, Farag K.;Bahadur, Issam
    • Smart Structures and Systems
    • /
    • v.23 no.5
    • /
    • pp.421-428
    • /
    • 2019
  • The development of the low power application such as wireless sensors and health monitoring systems, attract a great attention to low power vibration energy harvesters. The recent vibration energy harvesters use smart materials in their structures to convert ambient mechanical energy into electricity. The frequent model of this harvesters is cantilevered beam. In the literature, the base excitation cantilevered harvesters are mainly investigated, and the related models are presented. This paper investigates a tip excitation cantilevered beam energy harvester with permendur. In the first section, the mechanical model of the harvester and magneto-mechanical model of the permendur are presented. Later, to find the maximum output of the harvester, based on the response surface method (RSM), some experiments are done, and the results are analyzed. Finally, to verify the results of RSM, a harvester with optimum design variables is made, and its output power is compared. The last comparison verifies the estimation of the RSM method which was about $381{\mu}W/cm^3$.

A Cost-Benefit Analysis for the Installation of Piezoelectric Energy Harvester (압전에너지 하베스터 설치사업의 경제성 분석에 관한 연구)

  • Lee, Hyun-Kyung;Lee, Min-Gi;Kim, Hong-Bae
    • Journal of the Korean Regional Science Association
    • /
    • v.33 no.3
    • /
    • pp.49-59
    • /
    • 2017
  • The piezoelectric energy harvester is recently being developed and catching on as a way to achieve low carbon green growth. The practical application of the piezoelectric energy harvester is expected to contribute not only to the reduction of greenhouse gas emissions but also to the improvement of residents' welfare. This paper conducted a cost-benefit analysis for the installation of piezoelectric energy harvester on the highway focusing on its impacts on the public. The results showed that the installation of piezoelectric energy harvester on the gyeongbu highway is economically feasible in that it could increase the social welfare for the residents. Finally, this paper suggests policy direction for the practical use of the piezoelectric energy harvester, based on the results obtained.

System Reliability Analysis for Multiple Failure Modes of Piezoelectric Energy Harvester Using Generalized Complementary Intersection Method (Generalized Complementary Intersection Method를 이용한 압전 에너지 수확 장치의 다중 파손모드에 대한 시스템 신뢰성 해석)

  • Yoon, Heonjun;Youn, Byeng D.;Kim, Heung-Soo
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2014.10a
    • /
    • pp.544-544
    • /
    • 2014
  • Energy harvesting technology, which scavenges electric power from ambient, otherwise wasted, energy sources, has been explored to develop self-powered wireless sensors and possibly eliminate the battery replacement cost for wireless sensors. Among ambient energy sources, vibration energy can be converted into electric power through a piezoelectric energy harvester. For the last decade, although tremendous advances have been made in design methodology to maximize harvestable electric power under a given vibration condition, the research in reliability assessment to ensure durability has been stagnant due to the complicated nature of the multiple failure modes of a piezoelectric energy harvester, such as the interfacial delamination, fatigue failure, and dynamic fracture. Therefore, this study presents the first-ever system reliability analysis for multiple failure modes of a piezoelectric energy harvester using the Generalized Complementary Intersection Method (GCIM), while accounts for the energy conversion performance. The GCIM enables to decompose the probabilities of high-order joint failure events into probabilities of complementary intersection events. The electromechanically-coupled analytical model is implemented based on the Kirchhoff plate theory to analyze its output performances of a piezoelectric energy harvester. Since a durable as well as efficient design of a piezoelectric energy harvester is significantly important in sustainably utilizing self-powered electronics, we believe that technical development on system reliability analysis will have an immediate and major impact on piezoelectric energy harvesting technology.

  • PDF