• Title/Summary/Keyword: Harmony search algorithm

Search Result 113, Processing Time 0.022 seconds

Discrete Optimization of Structural System by Using the Harmony Search Heuristic Algorithm with Penalty Function (벌칙함수를 도입한 하모니서치 휴리스틱 알고리즘 기반 구조물의 이산최적설계법)

  • Jung, Ju-Seong;Choi, Yun-Chul;Lee, Kang-Seok
    • Journal of the Architectural Institute of Korea Structure & Construction
    • /
    • v.33 no.12
    • /
    • pp.53-62
    • /
    • 2017
  • Many gradient-based mathematical methods have been developed and are in use for structural size optimization problems, in which the cross-sectional areas or sizing variables are usually assumed to be continuous. In most practical structural engineering design problems, however, the design variables are discrete. The main objective of this paper is to propose an efficient optimization method for structures with discrete-sized variables based on the harmony search (HS) meta-heuristic algorithm that is derived using penalty function. The recently developed HS algorithm was conceptualized using the musical process of searching for a perfect state of harmony. It uses a stochastic random search instead of a gradient search so that derivative information is unnecessary. In this paper, a discrete search strategy using the HS algorithm with a static penalty function is presented in detail and its applicability using several standard truss examples is discussed. The numerical results reveal that the HS algorithm with the static penalty function proposed in this study is a powerful search and design optimization technique for structures with discrete-sized members.

Harmony Search Algorithm for Optimal Placement Problem of Distributed Generations (분산전원 최적설치를 위한 Harmony Search 알고리즘 응용)

  • Rhee, Sang-Bong;Kim, Kyu-Ho
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.5
    • /
    • pp.866-870
    • /
    • 2010
  • This paper presents a application of Harmony Search (HS) algorithm for optimal placement of distributed generations(DGs) in distribution systems. In optimization procedure, the HS algorithm denotes the searching ability for the global optimal solution with simple coding of the iteration procedure, and shows the fast convergence characteristics for getting solutions. The HS algorithm is tested on 9 buses and 69 buses distribution systems, and the results prove its effectiveness to determine appropriate placement points of DGs and reducing amount of active power without the occurrence of any mis-determination in selection of its capacity.

Harmony Search Algorithm for Network Reconfiguration Problem in Distribution Systems (배전계통 재구성 문제를 위한 Harmony Search 알고리즘 응용)

  • Rhee, Sang-Bong;Kim, Kyu-Ho;Kim, Chul-Hwan
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.9
    • /
    • pp.1667-1673
    • /
    • 2009
  • This paper presents a application of new algorithm for feeder reconfiguration problem in distribution systems. Harmony Search (HS) algorithm, which is motivated from the musical performance, is used to reconfigure distribution systems so that active power losses are globally minimized with turning on/off the sectionalizing and the tie-line switches. In optimization processing, the HS algorithm has searching ability for the global optimal solution, simple coding of the iteration procedure, and fast convergence to get the solution. The HS algorithm is tested on 15 buses and 69 buses distribution systems, and the results prove its effectiveness to determine appropriate switching options without the occurrence of any misdetermination in switching and get the minimum power loss.

A New Image Clustering Method Based on the Fuzzy Harmony Search Algorithm and Fourier Transform

  • Bekkouche, Ibtissem;Fizazi, Hadria
    • Journal of Information Processing Systems
    • /
    • v.12 no.4
    • /
    • pp.555-576
    • /
    • 2016
  • In the conventional clustering algorithms, an object could be assigned to only one group. However, this is sometimes not the case in reality, there are cases where the data do not belong to one group. As against, the fuzzy clustering takes into consideration the degree of fuzzy membership of each pixel relative to different classes. In order to overcome some shortcoming with traditional clustering methods, such as slow convergence and their sensitivity to initialization values, we have used the Harmony Search algorithm. It is based on the population metaheuristic algorithm, imitating the musical improvisation process. The major thrust of this algorithm lies in its ability to integrate the key components of population-based methods and local search-based methods in a simple optimization model. We propose in this paper a new unsupervised clustering method called the Fuzzy Harmony Search-Fourier Transform (FHS-FT). It is based on hybridization fuzzy clustering and the harmony search algorithm to increase its exploitation process and to further improve the generated solution, while the Fourier transform to increase the size of the image's data. The results show that the proposed method is able to provide viable solutions as compared to previous work.

A Study on the Performance Improvement of Harmony Search Optimization Algorithm (HS 최적화 알고리즘 성능 향상에 관한 연구)

  • Lee, Tae-Bong
    • Journal of Advanced Navigation Technology
    • /
    • v.25 no.5
    • /
    • pp.403-408
    • /
    • 2021
  • Harmony Search(HS) algorithm is an emerging meta-heuristic optimization algorithm, which is inspired by the music improvisation process and has been successfully applied to solve different optimization problems. In order to further improve the performance of HS, this paper proposes a new method which is called Fast Harmony Search(FSH) algorithm. For the purpose, this paper suggest a method to unify two independent improvisation processes by newly defining the boundary value of a object variable using HM. As the result, the process time of the algorithm is shorten and explicit decision of bandwidth is no more needed. Furthermore, exploitative power of random selection is improved. The numerical results reveal that the proposed algorithm can find better solutions and is faster when compared to the conventional HS.

An Application of Harmony Search Algorithm for Operational Cost Minimization of MicroGrid System (마이크로 그리드 운영비용 최소화를 위한 Harmony Search 알고리즘 응용)

  • Rhee, Sang-Bong;Kim, Kyu-Ho;Kim, Chul-Hwan
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.7
    • /
    • pp.1287-1293
    • /
    • 2009
  • This paper presents an application of Harmony Search (HM) meta-heuristic optimization algorithm for optimal operation of microgrid system. The microgrid system considered in this paper consists of a wind turbine, a diesel generator, and a fuel cell. An one day load profile which divided 20 minute data and wind resource for wind turbine generator were used for the study. In optimization, the HS algorithm is used for solving the problem of microgrid system operation which a various generation resources are available to meet the customer load demand with minimum operating cost. The application of HS algorithm to optimal operation of microgrid proves its effectiveness to determine optimally the generating resources without any differences of load mismatch and having its nature of fast convergency time as compared to other optimization method.

Size Optimization of Space Trusses Based on the Harmony Search Heuristic Algorithm (Harmony Search 알고리즘을 이용한 입체트러스의 단면최적화)

  • Lee Kang-Seok;Kim Jeong-Hee;Choi Chang-Sik;Lee Li-Hyung
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2005.04a
    • /
    • pp.359-366
    • /
    • 2005
  • Most engineering optimization are based on numerical linear and nonlinear programming methods that require substantial gradient information and usually seek to improve the solution in the neighborhood of a starting point. These algorithm, however, reveal a limited approach to complicated real-world optimization problems. If there is more than one local optimum in the problem, the result may depend on the selection of an initial point, and the obtained optimal solution may not necessarily be the global optimum. This paper describes a new harmony search(HS) meta-heuristic algorithm-based approach for structural size optimization problems with continuous design variables. This recently developed HS algorithm is conceptualized using the musical process of searching for a perfect state of harmony. It uses a stochastic random search instead of a gradient search so that derivative information is unnecessary. Two classical space truss optimization problems are presented to demonstrate the effectiveness and robustness of the HS algorithm. The results indicate that the proposed approach is a powerful search and optimization technique that may yield better solutions to structural engineering problems than those obtained using current algorithms.

  • PDF

Development and Applications of Multi-layered Harmony Search Algorithm for Improving Optimization Efficiency (최적화 기법 효율성 개선을 위한 Multi-layered Harmony Search Algorithm의 개발 및 적용)

  • Lee, Ho Min;Yoo, Do Guen;Lee, Eui Hoon;Choi, Young Hwan;Kim, Joong Hoon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.4
    • /
    • pp.1-12
    • /
    • 2016
  • The Harmony Search Algorithm (HSA) is one of the recently developed metaheuristic optimization algorithms. Since the development of HSA, it has been applied by many researchers from various fields. The increasing complexity of problems has created enormous challenges for the current technique, and improved techniques of optimization algorithms are required. In this study, to improve the HSA in terms of a structural setting, a new HSA that has structural characteristics, called the Multi-layered Harmony Search Algorithm (MLHSA) was proposed. In this new method, the structural characteristics were added to HSA to improve the exploration and exploitation capability. In addition, the MLHSA was applied to optimization problems, including unconstrained benchmark functions and water distribution system pipe diameter design problems to verify the efficiency and applicability of the proposed algorithm. The results revealed the strength of MLHSA and its competitiveness.

Development of Hybrid Vision Correction Algorithm (Hybrid Vision Correction Algorithm의 개발)

  • Ryu, Yong Min;Lee, Eui Hoon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.1
    • /
    • pp.61-73
    • /
    • 2021
  • Metaheuristic search methods have been developed to solve problems with a range of purpose functions in situations lacking information and time constraints. In this study, the Hybrid Vision Correction Algorithm (HVCA), which enhances the performance of the Vision Correction Algorithm (VCA), was developed. The HVCA has applied two methods to improve the performance of VCA. The first method changes the parameters required by the user for self-adaptive parameters. The second method, the CGS structure of the Exponential Bandwidth Harmony Search With a Centralized Global Search (EBHS-CGS), was added to the HVCA. The HVCA consists of two structures: CGS and VCA. To use the two structures, a method was applied to increase the probability of selecting the structure with the optimal value as it was performed. The optimization problem was applied to determine the performance of the HVCA, and the results were compared with Harmony Search (HS), Improved Harmony Search (IHS), and VCA. The HVCA improved the number of times to find the optimal value during 100 repetitions compared to HS, IHS, and VCA. Moreover, the HVCA reduced the Number of Function Evaluations (NFEs). Therefore, the performance of the HVCA has been improved.

Optimum Design of Truss on Sizing and Shape with Natural Frequency Constraints and Harmony Search Algorithm (하모니 서치 알고리즘과 고유진동수 제약조건에 의한 트러스의 단면과 형상 최적설계)

  • Kim, Bong-Ik;Kown, Jung-Hyun
    • Journal of Ocean Engineering and Technology
    • /
    • v.27 no.5
    • /
    • pp.36-42
    • /
    • 2013
  • We present the optimum design for the cross-sectional(sizing) and shape optimization of truss structures with natural frequency constraints. The optimum design method used in this paper employs continuous design variables and the Harmony Search Algorithm(HSA). HSA is a meta-heuristic search method for global optimization problems. In this paper, HSA uses the method of random number selection in an update process, along with penalty parameters, to construct the initial harmony memory in order to improve the fitness in the initial and update processes. In examples, 10-bar and 72-bar trusses are optimized for sizing, and 37-bar bridge type truss and 52-bar(like dome) for sizing and shape. Four typical truss optimization examples are employed to demonstrate the availability of HSA for finding the minimum weight optimum truss with multiple natural frequency constraints.