• Title/Summary/Keyword: Harmonic elimination

Search Result 124, Processing Time 0.022 seconds

A Study of the Current Reference Signal Generation Circuit for Single-Phase Harmonic Elimination Systems (단상 전원 고조파 제거 시스템을 위한 기준전류 생성회로에 대한 연구)

  • Jung Done-youl;Park Chong-yeon;Kim Sang-hun;Choi Won-ho
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.54 no.7
    • /
    • pp.335-342
    • /
    • 2005
  • This paper presents a circuit to generate the current reference signal for single-phase harmonic elemination systems. Some of conventional methods for the current reference signal generation based on neural network algorithms. It requires complex circuitry to implement. the simplest method is to use analog filters. but it is difficult to obtain good current reference signals. So, we propose the harmonic detection circuit using GIC(Generalized Impedance Converter) for the purpose of low cost ,simple circuitry and high performance, Simulation and experimental results verify that the proposed circuit has better harmonic detection performance than conventional circuit.

A Novel Harmonic Identification Algorithm for the Active Power Filters in Non-Ideal Voltage Source Systems

  • Santiprapan, Phonsit;Areerak, Kongpol;Areerak, Kongpan
    • Journal of Power Electronics
    • /
    • v.17 no.6
    • /
    • pp.1637-1649
    • /
    • 2017
  • This paper describes an intensive analysis of a harmonic identification algorithm in non-ideal voltages source systems. The dq-axis Fourier with a positive sequence voltage detector (DQFP) is a novel harmonic identification algorithm for active power filters. A compensating current control system based on repetitive control is presented. A design and stability analysis of the proposed current control are also given. The aim of the paper is to achieve a robustness of the harmonic identification in a distorted and unbalanced voltage source. The proposed ideas are supported by a hardware in the loop technique based on a $eZdsp^{TM}$ F28335 and the Simulink program. The obtained results are presented to demonstrate the performance of the harmonic identification and the control strategy for the active power filter in non-ideal systems.

A Study on the SHE-Based Harmonic Reduction of DC Power Regenerating Systems (SHE방식을 적용한 직류전력 회생시스템의 고조파 저감에 관한 연구)

  • 정우창;강경우;서영민;홍순찬
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.9 no.1
    • /
    • pp.58-64
    • /
    • 2004
  • This paper proposes a novel control scheme for the harmonic reduction of DC power regenerating systems, which can regenerate the excessive DC power from DC bus line to AC supply in subway systems. In the developed regenerating systems controlled by MAC(Modified a-Conduction) method, the order of remaining harmonics are 12k$\pm$1. In SHE(Selected Harmonic Elimination) method proposed in this paper, however, the l1th and 13th harmonics are additionally eliminated. And moreover 23rd harmonics, lowest order harmonics among the remaining harmonics, is eliminated by 23rd AC filter furnished at the output terminals of regenerating systems. To verify the validity of the proposed SHE-based harmonic reduction technique, computer simulations are carried out. Simulation results show that the THDs of output voltages are lower than that of the MAC method and the THDs in the control range are in the range of 0.53-0.68 percents.

Research on a Multi-Objective Control Strategy for Current-source PWM Rectifiers under Unbalanced and Harmonic Grid Voltage Conditions

  • Geng, Yi-Wen;Liu, Hai-Wei;Deng, Ren-Xiong;Tian, Fang-Fang;Bai, Hao-Feng;Wang, Kai
    • Journal of Power Electronics
    • /
    • v.18 no.1
    • /
    • pp.171-184
    • /
    • 2018
  • Unbalanced and distorted grid voltages cause the grid side current of a current source PWM rectifier to be heavily distorted. They can also cause the DC-link current to fluctuate with a huge amplitude. In order to enhance the performance of a current-source PWM rectifier under unbalanced and harmonic grid voltage conditions, a mathematical model of a current-source PWM rectifier is established and a flexible multi-objective control strategy is proposed to control the DC-link current and grid-current. The fundamental positive/negative sequence, $5^{th}$ and $7^{th}$ order harmonic components of the grid voltage are first separated with the proposed control strategy. The grid current reference are optimized based on three objectives: 1) sinusoidal and symmetrical grid current, 2) sinusoidal grid current and elimination of the DC-current $2^{nd}$ order fluctuations, and 3) elimination of the DC-current $2^{nd}$ and $6^{th}$ order fluctuations. To avoid separation of the grid current components, a multi-frequency proportional-resonant controller is applied to control the fundamental positive/negative sequence, $5^{th}$ and $7^{th}$ order harmonic current. Finally, experimental results verify the effectiveness of proposed control strategy.

A Study on New Harmonic Elimination Method Using Walsh Series (왈쉬급수를 사용한 새로운 고조파 제거 방법에 관한 연구)

  • 박민호;안두수;원충연;이해기;이명규;김태훈
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.39 no.3
    • /
    • pp.263-272
    • /
    • 1990
  • In the variable speed driving system of a three phase induction motor controlled by a PWM inverter, the output terminal contains considerable amount of harmonic components of the voltage waveform due to the switching action of semiconductor devices, causing torque ripples, acoustic noise and oscillation of the motor. This paper describes a new algorithm which eliminates the harmonics and controls the fundamental voltage in three phase PWM inverter output waveform. The new algorithm utilizes the technique of particular harmonics elimination (PHE) by walsh series in three phase PWM inverter output waveform. A microprocessor (8086 CPU)-controlled three phase induction motor system is described to realize this algorithm. The system is designed for 3 phase output voltage in the 1-60Hz interval where 5th and 7th harmonics, and 5th, 7th, 11th, and 13th harmonics are eliminated. Also, the fundamental wave amplitude is designed to be proportional to the output frequency. The performance of the proposed method shows sufficient elimination of the harmonics and also reduction of computation time which determines switching pattern. The proposed PWM pattern by Walsh series, is effective not only to induction motors but also to other electromagetic equipments such as voltage regulators and UPS.

Optimal Switching Pattern of SHE PWM for VSI-IM Drive System (VSI-IM 구동 시스템을 위한 SHE PWM의 최적 스위칭 패턴)

  • 이일형;정동화;이윤종
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.26 no.11
    • /
    • pp.1829-1838
    • /
    • 1989
  • This paper is proposed one method of the exact optimal switching pattern of Selected Harmonic Elimination(SHE) Pulse Width Modulation(PWM). It defined Harmonic Elimination Band (HEB) at Constant Voltage(CV) and sought all solutions which are included HEB. Then, it calculated the Generalized Klirr Factor(GKF) beling to this solution and decided the optimal switching pattern which is minimized GKF. This optimal switching solution is used as initial condition of Newto Raphson(NR) method of decided easily switching pattern at Variable Voltage(VV). We desined the inverter by Power Transister(PTR) and implemented variable speed drive of Induction Motor(IM) in order to verify the validity of this theoretical proposition, then shown this results by comparison and analysis.

  • PDF

A New Switching Pattern for Multilevel Inverter Based on Selective Harmonic Elimination Using Genetic Algorithm

  • Fekari, Seyyed Amir;Iranaq, Ali Reza Marami;Sabahi, Mehran
    • Journal of international Conference on Electrical Machines and Systems
    • /
    • v.3 no.3
    • /
    • pp.305-311
    • /
    • 2014
  • In this paper, a new switching pattern is presented for multilevel inverters. With changing off-angel of each switch, the on time interval of all switches will approximately be equal and then the lifetime of inverter will increase, also using this method can reduce electrical stress on switches in higher levels of inverter. Switching angels as for desired modulation index are calculated using genetic algorithm whereas selective harmonics are controlled within the allowable range. The computed angels are simulated in Matlab/Simulink for respective circuits to validate the results.

A Study on the New Harmonic Elimination Method of PWM Inverter (PWM인버터의 새로운 고조파 제거방법에 관한 연구)

  • 조준익;전병실
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.13 no.6
    • /
    • pp.529-534
    • /
    • 1988
  • This paper describes a new method to eliminate some selected harmonics in PWM waveforms using the Walsh series which substitute the linear algebraic equations for the nonlinear equations required in the Fourier series harmonic elimination. In addition, this method is simulated to synthesize periodic PWM waveforms and compare the Walsh analysis with the FOurier analysis, Experimental results are shown that a singel-phase PWM waveforms are identified with the proposed Walsh Series.

  • PDF

Optimal Switching Pattern of SHE PWM for drive Three Phase Voltage Type Inverter (3상 전압형 인버어터를 구동하기 위한 SHE PWM의 최적 스위칭 패턴)

  • Lee, Yoon-Jong;Chung, Dong-Wha;Kim, Hyenk-Ju
    • Proceedings of the KIEE Conference
    • /
    • 1987.11a
    • /
    • pp.347-350
    • /
    • 1987
  • This paper is proposed the optimal switching pattern of sleeted harmonic elimination (SHE PWM). It defined harmonic elimination band (HBE) to find the solution of Constant Voltage (CV), and sought all solutions which we are included HEB. Then, it calculated generalised klirr factor (GKF) by this solution and decided optimal switching pattern, used as initial conditions of newton raphson (NR) method to decide switching pattern at variable voltage (W). This strategy is applied to 1HP three phase induction motor. From the result, the validity of theoretical proposition can be verified.

  • PDF

Reduction of switching loss and low-order harmonics in three-phase PWM inverter using the selected harmonic elimination (특정고조파제거기법을 이용한 3상 PWM 인버터의 저차고조파제거 및 스위칭손실 저감에 관한 연구)

  • Jang, Chul;Lee, Byung-Jin;Yun, Jae-Sung;Suh, Yoon-Chul;Yu, Chul-Ro
    • Proceedings of the KIEE Conference
    • /
    • 1998.07f
    • /
    • pp.1960-1962
    • /
    • 1998
  • Reference/modulating waveform continuity is not a necessary condition for the implementation of switching patterns for three-phase pulse-width modulated(PWM) converters. This is based on the fact that the converter phase-voltages do not need to be sinusoidal and switching pattern discontinuities do not degrade the quality of output/input voltage/current waveforms by introducing low-order harmonics if certain parameters are optimized. This paper introduces the selected harmonic elimination to reduce the switching frequency and low-order harmonics compared with continuous PWM techniques and some discontinues switching patterns for PWM converter.

  • PDF