• Title/Summary/Keyword: Harmonic circulation

Search Result 16, Processing Time 0.022 seconds

A Harmonic Circulation Current Reduction Method for Parallel Operation of UPS with a Three-Phase PWM Inverter

  • Kim Kyung-Hwan;Kim Wook-Dong;Hyun Dong-Suk
    • Journal of Power Electronics
    • /
    • v.5 no.2
    • /
    • pp.160-165
    • /
    • 2005
  • In a parallel operation of UPS, there are two types of circulating currents between UPS. One is the low order circulating current with a fundamental frequency caused by the amplitude and phase differences of UPS output voltages, and the other is the harmonic circulating current with PWM switching frequency caused by non-synchronized PWM waveforms among UPS. The elimination of the low order circulating current is essential for optimal load sharing in parallel operations of UPS, which can be accomplished by the phase and magnitude control at each UPS. The harmonic circulating current may cause troubles and deteriorate in performance of the controller for optimal load sharing in parallel operation of UPS. This paper presents a PWM synchronizing method to eliminate the harmonic circulation current in parallel operation of UPS. The effectiveness of the proposed scheme has been investigated and verified through experiments by a 50kVA UPS.

Key Application Technologies of High Efficiency Power Quality Control Systems

  • Liu, Ding-Guo;Shuai, Zhi-Kang;Tu, Chun-Ming;Cheng, Ying;Luo, An
    • Journal of Power Electronics
    • /
    • v.13 no.3
    • /
    • pp.458-468
    • /
    • 2013
  • Large capacity reactive power compensation and harmonic control in the low-voltage grid of an enterprise, are important technical means to improve power quality and reduce power loss. In this paper, the principle of an efficient power quality controller is analyzed. Then, key application technologies of the HPQC which would influence the performances of the HPQC are studied. Based on an analysis of the harmonic shunt problem, a frequency dividing control strategy of the HPQC continuous subsystem is proposed. A parameter design method of the HPQC discrete subsystem and its installation method are also proposed to ensure the system compensation effect. HPQC systems have been designed for a copper foil plant. The effectiveness of this paper has been verified by the simulation and application results.

Numerical Simulations of Water Circulation and Pollutant Transport near a Coastal Area of Wolsung NPPs (월성원전 연안역 해수유동 및 오염물 이동 수치실험)

  • Park, Geon-Hyeong;Kim, Ki-Chul;Min, Byung-Il;Lee, Jung-Lyul;Suh, Kyung-Suk
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.10 no.4
    • /
    • pp.255-262
    • /
    • 2012
  • Numerical simulations were performed to evaluate the dispersion characteristics of the pollutant around a Wolsung coastal area at located nuclear power plants. Numerical experiments by using EFDC(Environmental Fluid Dynamics Code) showed good agreements by comparison with the time series and harmonic analysis of the tidal elevations. The released pollutants moved in north direction at flood tide and in south direction at ebb tide. The calculated salinity and temperatures showed good agreements with the observed results by NFRDI(National Fisheries Research & Development Institute). The water circulation due to the variations of the temperature, salinity and tidal components were analyzed to estimate the dispersion characteristics of the pollutant.

A Study of the SPWM High-Frequency Harmonic Circulating Currents in Modular Inverters

  • Xu, Sheng;Ji, Zhendong
    • Journal of Power Electronics
    • /
    • v.16 no.6
    • /
    • pp.2119-2128
    • /
    • 2016
  • Due to detection and control errors, some high-frequency harmonics with voltage-source characteristics cause circulating currents in modular inverters. Moreover, the circulating currents are usually affected by the output filters (OF) of each module due to their filter and resonance properties. The interaction among the circulating currents in the modules increase the power loss and reduce system stability and control precision. Therefore, this paper reports the results of a study on the SPWM high-frequency harmonics circulating currents for a double-module VSI. In the paper, an analysis of the circulating-current circuits is briefly described. Next, a mathematic model of the single-module output voltage based on the carrier frequency of SPWM is built. On this basis, through mathematic modeling of high-frequency harmonic circulating currents, the formation mechanism and distribution characteristics of circular currents and their influences are studied in detail. Finally, the influences of the OF on the circulating currents are studied by mainly taking an LC-type filter as an example. A theoretical analysis and experimental results demonstrate some important characteristics. First, the carrier phase shifting of the SPWM for each module is the major cause of the SPWM harmonic circulating currents, and the circulating currents are in an odd distribution around n-times the carrier frequency $n{\omega}_s$, where n = 1, 2, 3, ${\ldots}$. Second, the harmonic circular currents do not flow into the parallel system. Third, the OF can effectively suppress the non-circulating part of the high-frequency harmonic currents but is ineffective for the circulation part, and actually reduces system stability.

A Study on Time-space of Thesis in modern arcitecture space - Focus on concept of modem time - (근대 건축공간에서 시공간 개념에 관한 연구 - 근대적 시간의 개념을 중심으로 -)

  • 장세연;이성훈
    • Proceedings of the Korean Institute of Interior Design Conference
    • /
    • 2001.05a
    • /
    • pp.69-72
    • /
    • 2001
  • We are defined a space as the activities of creating value in harmonic relations between human and environment. After Industrial Revolution, relations between human and space is changing because of speed and visualization's power in contemporary society. We we known information where is far by means of visualization. There is only difference of speed. Movement in space means the line of vision and circulation. But it is tried to think relations between human and space again in result to experience indirectly. This study aims at the analysis of expression of the modem Architecture space in Giedion' Space, Time, Architecture and aesthetic systems applied to it. On the basis of that , this study analyzed the difference of Bergson' consideration from Modern Architecture about movement.

  • PDF

CIRCULATION KINEMATICS IN NONLINEAR LABOROTORY WAVES (조파수로에서의 질량순환)

  • ;Robert T. Hudspeth
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 1987.07a
    • /
    • pp.223-234
    • /
    • 1987
  • A weakly nonlinear solution is presented for the two-dimensional wave kinematics forced by a generic wavemaker of variable-draft. The solution is valid for both piston and hinged wavemakers of variable-draft that may be double articulated. The second-order propagating waves generated by a planar wave board are composed of two components; viz., a Stokes second-order wave and a second-harmonic wave forced by the wavemaker which travels at a different speed. A previously neglected time-independent solution that is required to satisfy a kinematic boundary condition on the wavemaker as well as a mixed boundary condition on the free surface is included for the first time. A component of the time-independent solution is found to accurately estimate the mean return current(correct to second-order) in a closed wave flume. This mean return current is usually estimated from kinematic considerations by a conservation of mass principle.

  • PDF

Structural and Vibration Analysis of On-shore Drilling System Consisting of Shale Shaker (시추용 육상 드릴링 시스템의 셰일 쉐이커 구조 및 진동해석)

  • Ban, Im-jun;Lim, Chae-og;Shin, Sung-chul
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.23 no.6_2
    • /
    • pp.1033-1042
    • /
    • 2020
  • Shale shaker which is one of the mud circulation systems is composed of a basket, a vibrator and a screen. Its purpose of a shale shaker is to induce drilling fluid to flow through a screen, transport solids across a screen surface, and discharge solids off the end of the screen. The new shale shaker for the on-shore drilling system is designed to be smaller than the original shale shaker which has the same capacity with the new on to enable to transport and to operate on the trailer. In this study, structural and vibrational analysis of shale shaker was carried out to evaluate the appropriateness of the design in terms of the structural stability.

Three-Dimensional Mixing Characteristics in Seomjin River Estuary (섬진강 하구역의 3차원 혼합특성 연구)

  • Kim, Jong-Kyu;Kwak, Gyeong-Il;Jeong, Jeong-Ho
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.11 no.3
    • /
    • pp.164-174
    • /
    • 2008
  • In this study we try to identify the three-dimensional mixing characteristics of Seomjin River discharges in Seomjin River Estuary and Gwangyang Bay using a seasonal field observation (CTD) during spring tide and a three-dimensional numerical model with EFDC (Environmental Fluid Dynamics Code). The tidal elevation conditions of the four main tidal harmonic constituents on the open boundary and river discharges and thermal effluents at the specific boundary are considered. The calculated harmonic constants of tide and tidal current agreed well with those of observations at two stations for tide and two stations for tidal current. The model successfully reproduced well known the estuarine circulation in Seomjin River Estuary where tide and river discharges are dominant forcings. In the winter mean discharges case, tidal currents move Seomjin River discharges in Seomjin River mouth and in the summer mean discharges case, river flows move Seomjin River discharges near ae Seomjin River Estuary. A three-dimensional mixing characteristics of Seomjin River Estuary show well a three-dimensional estuarine circulation and thermal effluents effect to the seasonal variation of river discharges.

  • PDF

Aerodynamic admittances of bridge deck sections: Issues and wind field dependence

  • Zhang, Zhitian;Zhang, Weifeng;Ge, Yaojun
    • Wind and Structures
    • /
    • v.25 no.3
    • /
    • pp.283-299
    • /
    • 2017
  • Two types of aerodynamic admittance function (AAF) that have been adopted in bridge aerodynamics are addressed. The first type is based on a group of supposed relations between flutter derivatives and AAFs. In so doing, the aero-elastic properties of a section could be used to determine AAFs. It is found that the supposed relations hold only for cases when the gust frequencies are within a very low range. Predominant frequencies of long-span bridges are, however, far away from this range. In this sense, the AAFs determined this way are of little practical significance. Another type of AAFs is based on the relation between the Theodorsen circulation function and the Sears function, which holds for thin airfoil theories. It is found, however, that an obvious illogicality exists in this methodology either. In this article, a viewpoint is put forward that AAFs of bluff bridge deck sections are inherently dependent on oncoming turbulent properties. This kind of dependence is investigated with a thin plate and a double-girder bluff section via computational fluid dynamics method. Two types of wind fluctuations are used for identification of AAFs. One is turbulent wind flow while the other is harmonic. The numerical results indicate that AAFs of the thin plate agree well with the Sears AAF, and show no obvious dependence on the oncoming wind fields. In contrast, for the case of bluff double-girder section, AAFs identified from the turbulent and harmonic flows of different amplitudes differ among each other, exhibiting obvious dependence on the oncoming wind field properties.

The Characteristics of Tidal Residual Current in Youngil Bay (영일만의 조석잔차류 거동 특성)

  • Kim Jong-Kyu
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.4 no.1
    • /
    • pp.14-23
    • /
    • 2001
  • The characteristics of tidal circulation with Hyungsan River discharges in Youngil Bay by the numerical experiments is elucidated. For the simulation of tidal residual currents related to inflow by the river discharges in Youngil Bay located in the southeastern part of Korean Peninsula, the two-dimensional numerical experiment is peformed. The tidal elevation boundary conditions of the 4 main tidal harmonic constituents (M₂, S₂, K₁ and O₁) on the open boundary and river discharges at the river boundary are considered. The computed results obtained from numerical experiment showed good agreements with the field observation ones. The residual currents generally flow toward the inner bay through the western (Dalman-Gap) and central areas of the bay, and then the currents go toward the outer bay along the eastern shore (Changgi-Gap) of the bay with anti-clockwise circulation. Especially, in the numerical experiment without Hyungsan River discharges, these flow patterns are disappeared. Based on the results, it showed that the Hyungsan River discharges play the dominant role in the patterns of tidal residual currents. This flow pattern of tidal residual currents are important mechanism of water quality, material transport in Youngil Bay.

  • PDF