• Title/Summary/Keyword: Harmful air

Search Result 418, Processing Time 0.03 seconds

A Study on Numerical Analysis and Performance Improvement of Ventilation Systems in Coating Room (코팅 룸 배기시스템 수치해석 및 성능개선에 대한 연구)

  • Lee, Ki Yeon;Kim, Kug Weon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.5
    • /
    • pp.2086-2091
    • /
    • 2013
  • One of the most important objects for the industrial ventilation is to protect worker's health from the harmful substances. Mainly in industrial ventilation, the harmful substances broken out through manufacturing process are to be quickly emitted outside. Recently the importance of the industrial ventilation increases with the recognition change of industrial ventilation from manufacturing focusing to human focusing. In this paper, the air flow simulation inside the coating room is performed. All the coating room and the ventilation system are modeled by SolidWorks program and air flow distribution and ventilation performance are analyzed by Flow simulation program. And the air flow directions and the air flow velocities inside the coating room are enhanced with the use of local ventilation.

An Economical Efficiency Analysis of De-painting Process for Fighter Jets using CVP Analysis (CVP 분석을 이용한 전투기 외부 도장면 제거 공정의 경제성 분석)

  • Lee, Chang Young;Park, Jong Hun
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.44 no.3
    • /
    • pp.39-49
    • /
    • 2021
  • The Korean Air-Force aircraft maintenance depot paints the exterior of various aircraft, including high-tech fighters. Aircraft exterior painting is a maintenance process for long-term life management by preventing damage to the aircraft surface due to corrosion. The de-painting process is essential to ensure the quality of aircraft exterior paints. However, because the Korean Air-Force's de-painting process is currently done with sanding or Plastic Media Blasting (PMB) method, it is exposed to harmful dust and harmful compounds and consumes a lot of manpower. This study compares the de-painting process currently applied by the ROK Air-Force and the more improved process of the US Air Force, and performs economic analysis for the introduction of advanced equipment. It aims to provide information that can determine the optimal time to introduce new facilities through Cost-Volume-Profit (CVP) analysis. As a result of the analysis, it was confirmed that the sanding method had the most economical efficiency up to 2 units per year, the PMB method from 3 to 21 units, and the laser method from 22 units or more. In addition, in a situation where the amount of de-painting work is expected to increase significantly due to the increase in fighters in future, BEP analysis was conducted on the expansion of the existing PMB method and the introduction of a new laser method. As a result of the analysis, it was confirmed that it is more economical to introduce the laser method when the amount of work exceeds the PMB work capacity(18 units per year). The paper would helpful to improve the productivity and quality of the Korean Air Force Aircraft maintenance depot through timely changes of facilities in the workplace in preparation for expansion.

Development of Air Supply System for Fuel Cell Electric Bus (연료전지 버스용 공기공급시스템 개발)

  • Kim, Woo-June;Park, Chang-Ho;Cho, Kyung-Seok;Oh, Chang-Hoon
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2007.06a
    • /
    • pp.561-564
    • /
    • 2007
  • FCEV uses electric energy which generated from the reaction between Hydrogen and Oxygen in fuel cell stack as driving force. As fossil fuels are exhausted, fuel cell is regarded as a potent substitute for next generation energy source, and thus, most of car-makers make every efforts to develop fuel cell electric vehicle (FCEV). In addition, fuel cell is also beneficial in aspect of environment, because only clean water is produced during chemical reaction process instead of harmful exhausted gas. Generally, Hydrogen is supplied from high-pressured fuel tank, and air blower (or compressor) supply Oxygen by pressurizing ambient air. Air blower which is driven by high speed motor consumes about $7{\sim}8$ % of energy generated from fuel cell stack. Therefore, the efficiency of an air blower is directly linked with the performance of FCEV. This study will present the development process of an air blower and its consisting parts respectively.

  • PDF

Development of Air Supply System for FCEV Bus (연료전지 버스용 공기공급시스템 개발)

  • Park, Chang-Ho;Cho, Kyung-Seok;Kim, Woo-June;Oh, Chang-Hoon
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2006.11a
    • /
    • pp.417-420
    • /
    • 2006
  • FCEV uses electric energy generated from the reaction between Hydrogen and Oxygen in fuel cell stack as driving force. As fossil fuels are exhausted, fuel cell is regarded as a potent substitute for next generation energy source, and thus, most of car-makers make every efforts to develop fuel cell electric vehicle (FCEV). In addition, fuel cell is also beneficial in aspect of environment, because only clean water is produced during chemical reaction process instead of harmful exhausted gas. Generally, Hydrogen is supplied from high-pressured fuel tank, and air blower (or compressor) supplies Oxygen by pressurizing ambient air. Air blower which is driven by high speed motor consumes about $7{\sim}8%$ of energy generated from fuel cell stack. Therefore, the efficiency of an air blower is directly linked with the overall performance of FCEV. This study will present developing process of an air blower and its consisting parts respectively.

  • PDF

Physical Properties of Magnesium Oxide-Based Adsorption Matrix using Diatomite (산화마그네슘 기반 규조토를 활용한 흡착형 경화체의 물리적 특성)

  • Lee, Won-Gyu;Kyoung, In-Soo;Lee, Sang-Soo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2019.05a
    • /
    • pp.184-185
    • /
    • 2019
  • Korea has defined fine dust as a social disaster as the problem of fine dust and air pollution becomes serious. Fine dust is classified as class one carcinogens because it is harmful to human body. When fine dusts enter the human body, they cause bronchial and skin diseases such as respiratory allergies, irritable pneumonia, asthma and atopy. As the air pollution becomes serious, the government is demanding measures to reduce fine dust. The polluted air in the outdoor is introduced into the room, thereby increasing the pollution degree of the indoor air quality. In this study, an adsorption type matrix for the improvement of indoor air quality was produced. Magnesium oxide and magnesium chloride were used as binders and diatomaceous earth was used as a adsorption material.

  • PDF

Setting time properties of cement matrix according to photosynthetic bacterial dilution ratio (광합성 세균 희석 비율에 따른 시멘트 경화체의 응결 특성)

  • Pyeon, Su-Jeong;Kim, Dae-Yeon;Lim, Jeong-Jun;Lee, Sang-Soo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2018.11a
    • /
    • pp.89-90
    • /
    • 2018
  • In recent years, harmful substances and fine dust in the air are caused by respiratory and cardiovascular diseases through various mechanisms when they are introduced into the human body through respiration, thereby exacerbating human health and causing cancer by prolonged exposure do. In order to prevent such fine dust from being introduced into the room and to improve indoor air quality, improvement of air quality has attracted attention. Among indoor air pollutants, fine dust and CO2 are pollutants that are directly affected by indoor number and activity. The purpose of this study is to evaluate the basic performance of cement matrix using photosynthetic bacteria as a basic study of fine dust and CO2 adsorption type matrix to suppress indoor air pollution and improve air quality.

  • PDF

The Reconstruction of Atmospheric Particle Size Distributions Using Optical Sensing Data and Some Regularization Methods l : Direct Methods (광측정 데이터와 최적화 방법들을 이용한 대기입자 크기분포 복원)

  • Kim, Seok-Seong;Yeon, Kyu-Hwang;Kim, Duck-Hyun
    • Proceedings of the Korea Air Pollution Research Association Conference
    • /
    • 2003.11a
    • /
    • pp.213-214
    • /
    • 2003
  • Atmospheric particles have a great deal of influences on the climate and the air quality, which change the living and industrial environments of a specific area. Especially, the suspended dusts and aerosols can often have a harmful influences on workers' health, equipments at working places. For this reasons, the measurement of atmospheric particle size distributions is of considerable current interest. (omitted)

  • PDF

Automated Plan Of Harmful Birds At Air Force Runways Using CNN (CNN을 활용한 공군 활주로 유해조류 퇴치 자동화 방안)

  • Bok-Yeong Kang;Hyeon-Jun Ko;Kyu-Hui Kim;Jae-In Min;Mi-Suk Kim
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2023.11a
    • /
    • pp.1051-1052
    • /
    • 2023
  • 조류충돌(Bird Strike)은 경제적 손실, 인명적 피해를 야기하여 공군의 항공작전을 제한하는 위협요소이다. 현 공군에서는 조수퇴치조(Bird Alert Team)의 경보 발령에 의존하거나 조류의 행동을 연구하는 등 인적 역량에 의존하는 시스템을 채택하고 있다. 본 연구는 CNN을 이용하여 활주로의 유해조류를 인식 및 분류하는 자동화 시스템에 대한 제안이다. 웹캠을 활용한 실시간 유해조류를 인식하는 연구를 통해 향후 운항관제대와의 연계, 지향성 조류퇴치 장비와의 연동 방안을 제시하여 공군의 조수퇴치조(Bird Alert Team)에 대한 자동화를 실현하고 공군에서 추진중인 스마트 비행단에 이바지하고자 한다.

A study on the management of harmful working environments for Increase of Labor productivity. (노동생산성 향상을 위한 유해작업환경관리에 관한 연구)

  • 조태웅;유익현;박성애
    • Journal of Environmental Health Sciences
    • /
    • v.3 no.1
    • /
    • pp.27-44
    • /
    • 1976
  • This study was carried out to evaluate the harmful factors in working environments and to investigate the labor productivity after improvement of environments, surveying 93 industrial establishments of 10 industries located in Youngdeungpo industrial area in Seoul. The results obtained were as follows: 1) The highest noise level of 125dB(A) was indicated at the rolling process of transport equipment manufacturing industry. 2) The best illumination level was shown in precise machinery industry and the worst was indicated in rubber products, metallic products and transport equipment manufacturing industries. 3) Thermal conditions were above threshold limit value (TLV) at more than two processes of all industries except printing industry. 4) The highest dust concentration was determined in textile and wearing manufacturing industry. 5) Organic solvents were detected at 52 processes in 93 industrial establishments and 33 processes of them showed higher than TLV. The results about harmful chemicals were as follows: a) sulfur dioxide ($SO_2$)was determined higher than TLV on welding process of metallic product manufacturing industry and heat treatment process of transport equipment manufacturing industry. b) Carbon monoxide (CO) concentration was 700ppm at heat treatment process of transport equipment manufacturing industry, indicating 14 times of TLV. c) vinylchloride concentration in the air of PVC raw material mixing process and PVC preparation process of chemical product manufacturing industry was determined higher than TLV. d) Hydrochloride (HCl) concentration in the air of wire expanding process of transport equipment manufacturing industry was determined higher than TLV. 7) Higher values of lead concentration than TLV were determined at lead welding metallic product manufacturing industry and type planting process of process of printing industry, $1.8mg/m^3$ and $0.3mg/m^3$ respectively. 9) 22, 968 of 52, 855 workers (i.e. 43.5%) in 93 industries were exposed to various harmful agents. 10) It was found that the improvement of illumination in electric apparatus manufacturing industry (from 20~40 lux to 420 lux) resulted in an increase in productivity of 6.5% per capita and a decrease in faulty products of 19%. 11) Improvement of environments using local exhaust ventilation system resulted in a decrease of harmful substances lower than TLV and an increase in productivity of 11.4%. 12) Improvement of shovelling tools based on ergonomics resulted in a reduction in energy expenditure of 25.3% and an increase in productivity of 32.2% per capita.

  • PDF

The removing characteristic of harmful exhaust from a motorcycle using non-thermal plasma (플라즈마를 이용한 이륜자동차 배출가스저감 특성)

  • Kim, Young-Ju;Park, Hong-Jae;Jung, Jang-Gun;Lee, Jae-Dong;Park, Jae-Yoon;Koh, Hee-Seog
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.07b
    • /
    • pp.1127-1130
    • /
    • 2003
  • In the last several centuries, humankind have been experienced the material abundance with a development of technical civilization and being industrialized quickly. During the process of this, environmental pollutant have occurred naturally so that humankind have more interests for environment pollutant. Air pollution caused by exhaust from a car is very harmful for human. Most of exhaust from a gasoline engine are $CO_x(CO+CO_2),\;NO_x(NO+NO_2)$, and THC(Total Hydrocarbon). The method to remove these kinds of noxious gases are so many thing such as the three catalysts, $NO_x$ catalysts, Filter and so on. However, although air pollution caused by exhaust from motorcycle have also occurred very much, there is no regulation for motorcycle. In this paper, we studied to remove $CO_x(CO+CO_2),\;NO_x(NO+NO_2)$, THC exhaust from a motorcycle using non-thermal plasma In the result, $NO_x(NO+NO_2)$ concentration was decreased approximately 70% and THC(Total Hydrocarbon) was removed about 40%.

  • PDF