• Title/Summary/Keyword: Hardware in the loop system

Search Result 364, Processing Time 0.025 seconds

An Evaluation on the Limit cycle Analysis Methods using the Hardware in the Loop Simulation (실시간 모의시험을 통한 리밋 사이클 해석 결과 분석)

  • Jeon, Sang-Woon
    • Aerospace Engineering and Technology
    • /
    • v.11 no.1
    • /
    • pp.145-157
    • /
    • 2012
  • The novel limit cycle analysis of the attitude control system using jet thrusters was presented based on a phase plane method by paper. It was shown in the software simulation results that the analysed results of the limit cycle was more accurate than those of the Haloulakos' method. But it was not verified in the real system. The proposed method is verified in the reaction control system for KSLV-I via an real time hardware in the loop simulation. It can be shown in this test that analyzed result of the limit cycle is very accurate.

An Investigation of Vehicle-to-Vehicle Distance Control Laws Using Hardware-in-the Loop Simulation (Hardware-in-the Loop Simulation 을 통한 차간거리 제어시스템의 제어 성능 연구)

  • Yi, Kyong-Su;Lee, Chan-Kyu
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.7
    • /
    • pp.1401-1407
    • /
    • 2002
  • This paper represents an investigation of the vehicle-to-vehicle distance control system using Hardware-in-the-Loop Simulation(HiLS). Control logic is primarily developed and tested with a specially equipped test vehicle. Establishment of an efficient and low cost development tool is a very important issue, and test vehicle approach is costly and time consuming. HiLS method is useful in the investigation of driver assistance and active safety systems. The HiLS system consists of a stepper motor for throttle control, a hydraulic brake system with an electronic vacuum booster, an electronic controller unit, a data logging computer which are used to save vehicle states and signals of actuator through a CAN and a simulation computer using mathematical vehicle model. Adaptation of a CAN instead of RS-232 Serial Interface for communication is a trend in the automotive industry. Since this environment is the same as a test vehicle, a control logic verified in laboratory can be easily transferred to a test vehicle.

Power-hardware-in-the loop simulation of PMSG type wind power generation system (PMSG 타입 풍력 발전시스템의 Power-hardware-in-the loop simulation)

  • Hwang, Chul-Sang;Kim, Gyeong-Hun;Kim, Nam-Won;Park, Jung-Do;Yi, Dong-Young;Lee, Sang-Jin;Park, Min-Won;Yu, In-Keun
    • Proceedings of the KIEE Conference
    • /
    • 2011.07a
    • /
    • pp.1296-1297
    • /
    • 2011
  • This paper deals with a power-hardware-in-the loop simulation (PHILS) of permanent magnet synchronous generator (PMSG) type wind power generation system (WPGS) using a real hardware which consists of a motor generator set with motor drive, real time digital simulator (RTDS), and back-to-back converter. A digital signal processor (DSP) controls the back-to-back converter connected between the back-to-back converter and the RTDS. The proposed PHILS can effectively be applied to demonstrate the operational characteristics of PMSG type WPGS under grid connection.

  • PDF

Enhancement of Roll Stability by Speed-Adaptive Robust Control (속도감은 강건제어에 의한 롤 운동 특성개선)

  • Kim, Hyo-Jun;Park, Yeong-Pil
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.18 no.4
    • /
    • pp.167-175
    • /
    • 2001
  • This paper presents design of active roll controller of a vehicle and experimental study using the electric actuating roll control system. Firstly, parameter sensitivity analysis is performed based on 3DOF linear vehicle model. The controller is designed in the frame work of gain-scheduled H$\infty$ control scheme considering the varying parameters induced by laden and running vehicle condition. In order to investigate a feasibility of an active control system, experimental work is performed using hardware-in-the -loop setup which has been constructed by the devised electric actuating system and the full vehicle model with tire characteristics. The performance is evaluated by experiment using hardware-in-the -loop simulation under the conditions of some steer maneuvers and parameter variations.

  • PDF

Hardware-in-the-Loop Simulation of a Vehicle-to-Vehicle Distance Control System (차간거리제어 Hardware-in-the-Loop 시뮬레이션)

  • Moon, Il-Ki;Lee, Chan-Kyu;Yi, Kyong-Su;Kwon, Young-Do
    • Proceedings of the KSME Conference
    • /
    • 2001.06b
    • /
    • pp.741-746
    • /
    • 2001
  • This paper presents an investigation of a vehicle-to-vehicle distance control using a Hardware-in-the-Loop Simulation(HiLS) system. Since vehicle tests are costly and time consuming, how to establish a efficient and low cost development tool is an important issue. The HiLS system consists of a stepper motor, an electronic vacuum booster, a controller unit and two computers which are used to form real time simulation and to save vehicle parameters and signals of actuator through a CAN(Controller Area Network). Adoption of a CAN for communication is a trend in the automotive industry. Since this environment is the same as that of a real vehicle, a distance control logic verified in laboratory can be easily transfered to a test vehicle.

  • PDF

Evaluation of Three-Phase Actuated Operation at Diamond Interchanges (다이아몬드 인터체인지의 3현시 감응제어 평가)

  • 이상수
    • Journal of Korean Society of Transportation
    • /
    • v.20 no.2
    • /
    • pp.149-159
    • /
    • 2002
  • The performance of two single-barrier three-phase control systems at diamond interchanges was evaluated for various traffic conditions. To emulate the actuated signal control, hardware-in-the-loop system combined with CORSIM simulation program was used. Two performance measures, average delay and total stops, were used for the evaluation process. Results showed that the two three-phase systems gave similar performance in terms of average delay, but not stops. The delay performance of each phasing system was generally dependent on the traffic pattern and ramp spacing. However, there was a distinct movement preference for each phasing system. The total stops decreased as the spacing increased, and it was the most sensitive variable that can differentiate between the two three-phase systems. It was also shown that the hardware-in-the-loop control could be a good method to overcome the limitations of current simulation technology.

An Experimental Investigation of a Collision Warning System for Automobiles using Hardware-in-the-Loop Simulations (차간거리 경보시스템의 HiLS 구현)

  • 송철기;김성하;이경수
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.6 no.5
    • /
    • pp.222-227
    • /
    • 1998
  • Collision warning systems have been an active research and development area as the interests and demands for ASV's (Advanced Safety Vehicles) have increased. This paper presents an experimental investigation of a collision warning system for automobiles. A collision warning HiLS(Hardware-in-the-Loop Simulation) system has been designed and used to test the collision warning algorithm, radar sensors, and warning displays under realistic operating conditions in the laboratory. the collision warning algorithm is operated by a warning index, which is a function of the warning distance and the braking distance. The computer calculates velocities of the preceding vehicle and following vehicle, relative distance and relative velocity of the vehicles using vehicle simulation models. The relative distance and the relative velocity are applied to the vehicle simulator controlled by a DC motor.

  • PDF

Development of Hardware-In-The-Loop Simulator for ABS (ABS를 위한 HIL시뮬레이터 개발)

  • 서명원;김석민;정재현;석창성;김영진;이선일;이재천
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.6 no.2
    • /
    • pp.155-167
    • /
    • 1998
  • The prevalence of microprocessor-based controllers in automotive systems has greatly increased the meed for tools which can be used to validate and test control systems over their full range of operation. The objective of this paper is to develop a real time simulator of an anti-lock braking system and the methodology of using hardware-in-the-loop simulation based on a personal computer. By use of this simulator, the analyses of a commercial electronic control unit as well as the validation of the developed control logics for ABS were performed successfully. The simulator of this research can be traction applied to development of more advanced control system, such as traction control systems, vehicle dynamic control system and so forth.

  • PDF

Attitude Controller Design and Test of Korea Space Launch Vehicle-I Upper Stage

  • Sun, Byung-Chan;Park, Yong-Kyu;Roh, Woong-Rae;Cho, Gwang-Rae
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.11 no.4
    • /
    • pp.303-312
    • /
    • 2010
  • This paper introduces the upper stage attitude control system of KSLV-I, which is the first space launch vehicle in Korea. The KSLV-I upper stage attitude control system consists of two electro-hydraulic actuators and a reaction control system using cold nitrogen gas. A proportional, derivative, and integral controller is designed for the electro-hydraulic thrust vectoring system, and Schmidt trigger ON/OFF controllers are designed for the reaction control system. Each attitude controller is designed to have enough stability margins. The stability and performance of KSLV-I upper stage attitude control system is verified via hardware in the loop tests. Hardware in the loop tests are accomplished for perturbed flight conditions as well as nominal flight condition. The test results show that the attitude control loop of KSLV-I upper stage is very stable and the attitude controllers perform well for all flight conditions. Attitude controllers designed in this paper have been successfully applied to the first flight of KSLV-I on August 25, 2009. The flight test results show that all attitude controllers of the KSLV-I upper stage performed well and satisfied the accuracy specifications even during abnormal flight conditions.

Real-time and Power Hardware-in-the-loop Simulation of PEM Fuel Cell Stack System

  • Jung, Jee-Hoon
    • Journal of Power Electronics
    • /
    • v.11 no.2
    • /
    • pp.202-210
    • /
    • 2011
  • Polymer electrolyte membrane (PEM) fuel cell is one of the popular renewable energy sources and widely used in commercial medium power areas from portable electronic devices to electric vehicles. In addition, the increased integration of the PEM fuel cell with power electronics, dynamic loads, and control systems requires accurate electrical models and simulation methods to emulate their electrical behaviors. Advancement in parallel computation techniques, various real-time simulation tools, and smart power hardware have allowed the prototyping of novel apparatus to be investigated in a virtual system under a wide range of realistic conditions repeatedly, safely, and economically. This paper builds up advancements of optimized model constructions for a fuel cell stack system on a real-time simulator in the view points of improving dynamic model accuracy and boosting computation speed. In addition, several considerations for a power hardware-in-the-loop (PHIL) simulation are provided to electrically emulate the PEM fuel cell stack system with power facilities. The effectiveness of the proposed PHIL simulation method developed on Opal RT's RT-Lab Matlab/Simulink based real-time engineering simulator and a programmable power supply is verified using experimental results of the proposed PHIL simulation system with a Ballard Nexa fuel cell stack.