• Title/Summary/Keyword: Hardness depth

Search Result 451, Processing Time 0.026 seconds

Adjustment Of Roll Gap For The Dimension Accuracy Of Bar In Hot Bar Rolling Process (열간 선재 압연제품의 치수정밀도 향상을 위한 롤 갭 조정)

  • 김동환;김병민;이영석;유선준;주웅용
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.10a
    • /
    • pp.1036-1041
    • /
    • 1997
  • The objective of this study is to adjust the roll gap for the dimension accuracy of bar in hot bar rolling process considering roll wear. In this study hot bar rolling processes for round and oval passes have been investigated. In order to predict the roll wear, the wear model is reformulated as an incremental form and then wear depth of roll is calculated at each deformation step on contact area using the results of finite element analysis, such as relative sliding velocity and normal pressure at contact area. Archard's wear model was applied to predict the roll wear. To know the effects of thermal softening of DCI (Ductile Cast Iron) roll material according to operating conditions, high temperature micro hardness test is executed and a new wear model has been proposed by considering the thermal softening of DCI roll expressed in terms of the main tempering curve. The new technique developed in this study for adjusting roll gap can give more systematically and economically feasible means to improve the dimension accuracy of bar with full usefulness and generality.

  • PDF

Evaluation of die life during hot forging process (열간 단조 공정의 금형 수명 평가)

  • 이현철;박태준;고대철;김병민
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.10a
    • /
    • pp.1051-1055
    • /
    • 1997
  • Hot forging is widely used in the manufacturing of automotive component. The mechanical, thermal load and thermal softening which is happened by the high temperature die in hot forging. Tool life of hot forging decreases considerably due to the softening of the surface layer of a tool caused by a high thermal load and long contact time between the tool and workpieces. The service life of tools in hot forging process is to a large extent limited by wear, heat crack, plastic deformation. These are one of the main factors affecting die accuracy and tool life. It is desired to predict tool life by developing life prediction method by FE-simulation. Lots of researches have been done into the life prediction of cold forming die, and the results of those researches were trustworthy, but there have been little applications of hot forming die. That is because hot forming process has many factors influencing tool life, and there was not accurate in-process data. In this research, life prediction of hot forming die by wear analysis and plastic deformation has been carried out. To predict tool life, by experiment of tempering of die, tempering curve was obtained and hardness express a function of main tempering curve.

  • PDF

The Evaluation of Residual Stresses in the Welded Joint of Steel Materials by the Optimum Selection of the Advanced Indentation Technique (연속압입시험의 최적조건 선정을 통한 철강재료의 용접부 잔류응력 평가)

  • Yu, Seung-Jong;Kim, Joo-Hyun
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.24 no.2 s.191
    • /
    • pp.118-126
    • /
    • 2007
  • Most of materials receive forces in use so that the characteristics of materials must be considered in system design to prevent deformation or destruction. Mechanical properties of materials can be expressed as responsible level of material itself under the exterior operation. Main mechanical properties are strength, hardness, ductility and stiffness. Currently, among major measure facilities to measure the mechanical properties, advanced indentation technique has important use in industrial areas due to nondestructive and easy applications for mechanical tensile properties and evaluation of residual stress of materials. This study is to find the optimum experimental condition about residual stress advanced indentation technique for accurate analysis of the welded joint of steel materials through indentation load-depth curve obtained from cruciform specimen experiment. Optimum selection was applied to the welded joint of real steel materials to find out non-equi-biaxial stress state and the results were compared with general residual stress analyzing method fur verification.

Creep Characteristics of Ti-6Al-4V Alloy Surface Modified by Plasma Carburized/CrN Coating (복합처리(Carburized/CrN Coating)로 표면개질된 Ti-6Al-4V합금의 크리프 특성)

  • Park, Yong-Gwon;Park, Jung-Ung;Wey, Myeong-Yong
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.18 no.3
    • /
    • pp.183-189
    • /
    • 2005
  • The effects of duplex-treatment of plasma carburization and CrN coating onto Ti-6Al-4V alloy on its creep properties were investigated by means of a constant stress creep tester. Applying duplex-treatment, specimens having an inner carburized layer of about $150{\mu}m$ in depth and outer CrN layer of about $7.5{\mu}m$ in thickness were prepared. The hardness of duplex-treatment surface was about 1,960 VHN. It also appeared that the duplex-treatment improved the roughness of the surface significantly; $Ra=0.045{\mu}m$ for treated alloy while $Ra=0.321{\mu}m$ for untreated alloy. The steady-state creep behaviors were investigated in a temperature range of $510{\sim}550^{\circ}C$ ($0.42{\sim}0.44T_m$) under an applied stress range of 200~275 MPa. The stress exponent, n, was derived assuming the power law creep behavior. The surface treatment showed a decrease in a value from 9.32 (untreated) to 8.79 (treated). Also the activation energy obtained from an Arrhenius plot increased from 238 to 257 kJ/mol.

A Study on the Effect of Pre-treatment on the Formation of Nitriding Layer by Post Plasma (포스트 플라즈마를 이용한 질화의 질화층 형성에 미치는 전처리의 영향에 대한 연구)

  • Moon, Kyoung Il;Byun, Sang Mo;Cho, Yong Ki;Kim, Sang Gweon;Kim, Sung Wan
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.18 no.1
    • /
    • pp.24-28
    • /
    • 2005
  • New post plasma nitriding can achieve a high uniformity that have been difficult in DC nitriding and have a high productivity comparable to gas nitriding. However, it has not a enough high nitriding potential for a rapid nitriding, because surface activation or ion etching in the general plasma nitriding cannot be expected. Thus, in this study, the effects of pre-treatments with oxidation and reduction gas have been investigated to improve the nitriding kinetics of post plasma nitriding. An effective pre-treatment consisting of oxidation and reduction resulted in the increase of surface energy of STD 11. This induced the surface hardness and the effective nitriding depth of STD 11. It is thought that the increase of the surface energy and the surface area with pre-treatment promote the nucleation of nitriding layer.

Properties of ELID Mirror-Surface Grinding for Single Crystal Sapphire Optics (단결정 사파이어 광학소자의 ELID 경면연삭 가공 특성)

  • Kwak, Jae-Seob;Kim, Geon-Hee;Lee, Yong-Chul;Ohmori, Hitoshi;Kwak, Tae-Soo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.29 no.3
    • /
    • pp.247-252
    • /
    • 2012
  • This study has been focused on application of ELID mirror-surface grinding technology for manufacturing single crystal optic sapphire. Single crystal sapphire is a superior material with optic properties of high performance as light transmission, thermal conductivity, hardness and so on. Mirror-surface machining technology is necessary to use sapphire as optic parts. The ELID grinding system has been set up for machining of the sapphire material. According to the ELID experimental results, it shows that the surface of sapphire can be eliminated by metal bonded wheel with micron abrasives and the surface roughness of 60nmRa can be gotten using grinding wheel of 2,000 mesh in 4.5um, depth of cut. In this study, the chemical experiments after ELID grinding also has been conducted to check chemical reaction between workpiece and grinding wheel on ELID grinding process. It shows that the chemical reaction has not happened as the results of the chemical experiments.

Improvement of Machinability for QRO90 High Hardened Core Part by High Speed Machining (고속가공에 의한 고경도재 QRO90 코어부의 가공성 향상)

  • Gang, Myeong-Chang;Kim, Jeong-Seok;Lee, Deuk-U;Im, Yu-Eop
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.19 no.3
    • /
    • pp.101-106
    • /
    • 2002
  • This paper presents an experimental investigation of high speed machining of dies and molds. Several critical issues involved with the high speed machining of QRO90 tool steel of hardness up to HRc62, have been studied and explained from a detail analysis of experimental observations. The experiments were performed using ball end mills. The effect of different process parameters on tool life and surface finish produced was also investigated. The cutting parameters involved were; cutting speeds in the range of 100 to 40 / m/min, axial depth of cut from 0.1 to 0.5mm, pick feed of 0.1 to 0.5mm. Run out and acceleration signals were observed during the experiment to investigate cutting slates. Compressed air and flood coolant were used and the effect of coolant on tool life was also determined.

Mechanical Characteristics of Nano-Structured Tool Steel by Ultrasonic Cold Forging Technology

  • Suh, Chang-Min;Song, Gil-Ho;Suh, Min-Soo;Pyoun, Young-Shik;Kim, Min-Ho
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2006.11a
    • /
    • pp.35-40
    • /
    • 2006
  • Ultrasonic cold forging technology (UCFT) utilizing ultrasonic vibration energy is a method to induce severe plastic deformation to a material surface, therefore the structure of the material surface becomes a nano-crystal structure from the surface to a certain depth. It improves the mechanical properties; hardness, compressive residual stress, wear and fatigue characteristics. Applying UCFT to a rolling process in the steel industry is introduced in this study. First, the UCFT specimens of a tool steel (SKD-61/equivalent H13) are prepared and tested to verify the effects of the UCFT in a variety of mechanical properties, the UCFT is applied to the trimming knives in a cold rolling process. It has been determined that UCFT improves the mechanical properties effectively and becomes a practical method to improve productivity and reliability by about two times compared with the conventionally treated tooling in the trimming process in a cold rolling line.

  • PDF

Development of Evaluation Technology of Mechanical Properties Using Continuous Indentation Method (연속압입시험법을 이용한 소재의 기계적 물성 평가기술 연구)

  • Lee, Jeong-Hwan;Ok, Myoung-Ryul;Lee, Yun-Hee;Ahn, Jeong-Hoon;Kwon, Dong-Il
    • Proceedings of the KIEE Conference
    • /
    • 1997.11a
    • /
    • pp.703-708
    • /
    • 1997
  • Continuous indentation test is a very powerful method to monitor the materials reliability since it is very simple, easy and almost non-destructive. It can provide material properties such as elastic modulus, yield strength, work-hardening exponent, etc., than the conventional hardness test. In our study, the true stress-strain curve is derived from the indentation load-depth curve. For this, average indentation strain is defined and the flow stress is obtained from the analysis of the indentation stress field. The residual stress is analyzed from the variation of the indentation behavior with the applied residual stress. And the estimation of fracture characteristic is tried by considering the conventional fracture toughness modeling and the stress/strain state under the spherical indenter.

  • PDF

A Study in the Heat Resistance Properties of STD61 Steel using the Surface Hardening Method (STD61 강의 내열특성향상을 위한 표면경화에 관한 연구)

  • Lee, Gu-Hyeon
    • 연구논문집
    • /
    • s.26
    • /
    • pp.121-132
    • /
    • 1996
  • The carburising surface modification treatment of the die steel has been used for improving wear resistance and heat cycle strength of the die and preventing a pitting on the surface because the carbides are forming in the matrix during carburising. Generally, the hot forging die was used after quenching-tempering treatment or nitriding after quenching-tempering treatment. The nitriding after carburising on the surface of a hot die steel and a wear resistance die steels was suggested by SOUCHARD, JACQUOT. and BUVRON. This surface modification treatment improved the adhesive and abrasive wear resistance and friction coefficient. The process was introduced to the forging die of stainless steel, titanium alloy steel, alloy and medium carbon steel and the physical properties of the die after the treatment were improved. The surface hardening treatment of the nitriding, the carburising, the boriding, and TD process were used to improved the life time of the forging die. Also, the coating process of PVD, CVD and PCVD were used and the hard chromium plating was occasionally used. Therefore, this study analyzed the effects of the carburising time and the conditions of nitriding on STD61 steel. The case depth, the surface hardness, the forming carbide size and shape during overcarburising process on the die steel were also examined.

  • PDF