• Title/Summary/Keyword: Hardening process

Search Result 536, Processing Time 0.028 seconds

Improvement of Surface Properties of CP-Titanium by Thermo-Chemical Treatment (TCT) Process (열확산처리 공정에 의한 순수 타이타늄의 표면특성 향상 연구)

  • Jeong, Hyeon-Gyeong;Lee, Dong-Geun;Yaskiv, O.;Lee, Yong-Tai;Hur, Bo-Young
    • Korean Journal of Metals and Materials
    • /
    • v.49 no.9
    • /
    • pp.692-698
    • /
    • 2011
  • The thermo-chemical treatment (TCT) process was applied to achieve surface hardening of CP titanium. The following three different surface modification conditions were tested so that the best surface hardening process could be selected:(a) PVD, (b) TCT+PVD, and (c) TCT+Aging+PVD. These specimens were tested and analyzed in terms of surface roughness, wear, friction coefficient, and the gradient of hardening from the surface of the matrix. The three test conditions were all beneficial to improve the surface hardness of CP titanium. Moreover, the TCT treated specimens, that is, (b) and (c), showed significantly improved surface hardness and low friction coefficients through the thickness up to $100{\mu}m$. This is due to the functionally gradient hardened surface improvement by the diffused interstitial elements. The hardened surface also showed improvement in bonding between the PVD and TCT surface, and this leads to improvement in wear resistance. However, TCT after aging treatment did not show much improvement in surface properties compared to TCT only. For the best surface hardening on CP titanium, TCT+PVD has advantages in surface durability and economics.

레이저 표면경화처리에서 빔의 형태에 따른 경화층 크기에 관한 연구

  • 김재웅
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1993.04b
    • /
    • pp.13-17
    • /
    • 1993
  • Analytical models for the prediction of the size of hardened zone in laser surface hardening are presented. The models are based on the solutions to the problem of three-dimensional heat flow in plates with infinite thickness. The validity of the model was tested on medium carbon steel for Gaaussian mode of beam. Then the model for rectangular beam was used for the prediction of the size of harened zone on various hardening process parameters. From the calculation results it appeared that the size and shape of the hardened zone are strongly dependent on process parameters suchas beam mode, beam size, and traverse speed.

Design of the Kernel Hardening Function for Stability the Linux Operating System (리눅스 운영체제 안정화를 위한 커널 하드닝 기능 설계)

  • Jang Seung-Ju
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.9 no.6
    • /
    • pp.1333-1340
    • /
    • 2005
  • This paper is based on the study to reduce a system panic state. A panic state could be caused by a programmer or an administrator's careless mistake. The proposed hardening Operating System of this paper stops the process which is running in the kernel with an error. The error process for the value type and the address type of a certain variable have to be restored. Installed with kernel hardening, Operating System checks the recovery possibility of the process first and then restores the process which can be recovered. When it is possible to recover the kernel code with an error, it is to be recovered in ASSERT() function.

Bending Fatigue Strength of Carburized and Induction Hardened Gears (침탄 및 고주파 열처리한 치차의 굽힘피로강도 평가)

  • Kim, W.D.;Choi, B.I.;Han, S.W.;Kim, J.H.
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.2 no.6
    • /
    • pp.1-8
    • /
    • 1994
  • To enhance the strength of gears for transmission, Generally caburizing heat treatment is applied. But there are some problems in this technology the distortion of gears during heat treatment process, and the discontinuity of manufacturing process. For these reasons, the high frequency induction hardening process is widely used. This method is one of the surface hardening process to improve the wear resistance and fatigue life of the machine components. In this study, to compare the bending fatigue strength of caburized gear with that of induction hardened gear, bending fatigue testing of gears with two different cases was performed by using an electrohydraulic servo-controlled fatigue testing machine and double tooth bending fatigue test fixture. Fatigue life distributions at constant stress levels were established directly from fatigue data. For gear design, the fatigue strength distribution at specified life is more important. This distribution is obtained by statical transformation from fatigue life distribution. Reliability of bending fatigue strength was estimated by P-S-N curves and Weibull distribution.

  • PDF

The Overstrain of Thick-Walled Cylinders Considering the Bauschinger Effect Facto. (BEF)

  • Ghorbanpour, A.;Loghman, A.;Khademizadeh, H.;Moradi, M.
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.4
    • /
    • pp.477-483
    • /
    • 2003
  • An independent kinematic hardening material model in which the reverse yielding point is defined by the Bauschinger effect factor (BEF) , has been defined for stainless steel SUS 304. The material model and the BEF are obtained experimentally and represented mathematically as continuous functions of effective plastic strain. The material model has been incorporated in a non-linear stress analysis for the prediction of reverse yielding in thick-walled cylinders during the autofrettage process of these vessels. Residual stress distributions of the independent kinematic hardening material model at the onset of reverse yielding are compared with residual stresses of an isotropic hardening model showing the significant effect of the BEF on reverse yielding predictions. Critical pressures of direct and reverse yielding are obtained for the most commonly used cylinders and a range of permissible internal pressures for an efficient autofrettaged process is recommended.

An Experimental Study on the Influence of Heat of Hydration in High Strength Concrete during Hardening Process (고강도콘크리트의 내부온도이력과 경화콘크리트의 특성에 관한 실험적 연구)

  • 윤영수;이승훈;박희민;성상래;백승준;장일영;신성우
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1994.10a
    • /
    • pp.127-132
    • /
    • 1994
  • This study attemps to investigate the influence of heat of hydration occured during hardening on the strength development of high strength concrete. The concrete design strengths of 500kg/$\textrm{cm}^2$ and 700kg/$\textrm{cm}^2$ were considered to simulated the square columns having $80\times80cm$ and $100\times100cm$, respectively. Both standard curing and field curing specimen were prepared at the specified ages, and the cores were drilled out from the structure. The thermal sensors were installed into the specimen to measure the heat of hydration process occurred during the hardening. This paper tries to uncover the relationship between the temperature history of the concrete and strength development. The correlation of core strength and specimen strength with curing condition is also discussed. Further research is desired to enlight the relationship between strength and heat of hydration of high strength concrete.

  • PDF

A Study on Mechanical Property and Fatigue Crack Growth Behavior of Surface-Hardened SM53C Steel (표면 경화된 SM53C의 기계적 특성 및 피로균열진전 거동해석에 관한 연구)

  • Kim, Hwang-Soo;Kim, Jung-Hyun;Jeon, Hyun-Bae
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.9 no.4
    • /
    • pp.44-52
    • /
    • 2010
  • Recently, with the high performance and efficiency of machine, there have been required the multi-functions in various machine parts, such as the heat resistance, the abrasion resistance and the stress resistance as well as the strength. Fatigue crack growth tests were carried out to investigate the fatigue characteristics of high carbon steel (SM53C) experienced by high-frequency induction treatment. The influence of high-frequency induction treatment on fatigue limit was experimentally examined with the specialfocus on the variation of surface microstructure and the fatigue crack initiation and propagation through fractography. Also, the shape of hardening depth, hardened structure, hardness, and fatigue-fracture characteristics of SM53C composed by carbon steel are also investigated.

The effect of micro-alloying steel characteristics on the multi-stage forging process (다단 냉간 단조에 미치는 냉간비조질강의 특성에 관한 연구)

  • Lee S. H.;Lee K. T.;Kwon Y. N.;Kim J. H.;Lee J. H.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2005.05a
    • /
    • pp.317-320
    • /
    • 2005
  • The micro-alloying forging steels have been developed to save energy consumption during forging and subsequent heat treatment stages. The work hardening ability of micro-alloying forging steels is one of major hardening component while it gives severe die damage if the forging process design is poorly set up on the other hand. In the present study, it was tried to characterize three types of micro-alloying forging steels to understand the differences with the conventional low carbon steels used fur cold forging with a spherodizing heat treatment. After forging of a certain forging part with both micro-alloying forging steels and conventional low carbon steel, several mechanical tests were carried out.

  • PDF

A study on the Effect for Process Parameters on the Micro-pulse Plasma Nitriding of Ductile Cast Iron (구상흑연주철의 마이크로 펄스 플라즈마 질화에 미치는 공정변수의 영향에 관한 연구)

  • 김무길;이철민;권성겸;정병호;이재식;유용주;김기준
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.24 no.3
    • /
    • pp.43-51
    • /
    • 2000
  • The effect of time, temperature and gas composition on the case hardened thickness, hardness and nitride formation in the surface of ductile cast iron(GCD400) have been studied by micro-pulse plasma technique. Typically, external compound layer and internal diffusion layer which is much thicker than compound layer was observed in the nitride hardening of ductile cast iron. The relative amount kind of phases formed in the nitrided hardening changed with the change of nitriding conditions. Generally, only nitride phases such as $\gamma^'$($Fe_4N$), or $\varepsilon$($Fe_{2-3}N$) phases were detected in compound layer by XRD analysis. The thickness of compound layer increased with the increase of nitrogen content in the gas composition. The optimum nitriding temperature was obtained at $520^{\circ}C$. The nitrided hardening thickness parabolically with nitriding time(t) and thus, the case hardened layer(d) fits well with the typical parabolic equation ; d=kt. The material constant k for GCD400 nitrided at $520^{\circ}C$ was $0.04919\times10^3{\mu}m.hr^{-1/2}$.

  • PDF

The Surface Hardening Characteristics of Hot work Tool Steel by CW Nd:YAG Laser (CW Nd:YAG 레이저에 의한 열간금형 공구강의 표면경화특성)

  • Shin H.J.;Yoo Y.T.;Ahn D.G.;Shin B.H.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.219-220
    • /
    • 2006
  • Laser surface hardening technologies have been used to improve characteristics of wear and to enhance the fatigue resistance for mold parts. The objective of this research work is to investigate the influence of the process parameters, such as power of laser and defocused spot position, on the characteristics of laser surface hardening for the case of SKD61 steel. CW Nd:YAG laser is selected as the heat source. The optical lens with the elliptical profile is designed to obtain a wide surface hardening area with a uniform hardness. From the results of the experiments, it has been shown that the maximum hardness is approximatly 740 Hv when the power, focal position and the travel of laser are 1,095 W, +1mm and 0.3 m/min, respectively. In addition, the hardening width using the elliptical lens was three time larger than that using the defocusing of laser beam.

  • PDF