• 제목/요약/키워드: Hardening Depth

검색결과 189건 처리시간 0.025초

Study on the Wear Resistance of Gray Cast Iron in Laser Surface Hardening (레이저 표면경화처리된 회주철의 내마모특성에 관한 연구)

  • Park, K.W.;Han, Y.H.;Lee, S.Y.
    • Journal of the Korean Society for Heat Treatment
    • /
    • 제9권4호
    • /
    • pp.271-280
    • /
    • 1996
  • This study has been performed to investigate into some effects of power density and traverse speed of laser beam on optical microstructure, hardness and wear characteristics of gray cast iron treated by laser surface hardening technique. Optical micrograph has shown that large martensite and a small amount of retained austenite appear in outermost surface layer with fine martensite in inside hardened zone. Hardness measurements have revealed that the range of maximun hardness value is $Hv=650{\pm}15$ and as the power density increases and the traverse speed decreses, the depth of hardened zone increases due to as increase in input power density. Wear test has exhibited that wear rasistance of laser surface hardened specimen is superier compared to that of untreated specimen under the condition of same load at a given sliding distance, showing that absorption results of an wxidized substance due to a heavy abrasion appear in untreated specimen. The amount of weight loss of laser surface hardened specimen with respect to sliding distance at a given load decreses with increasing traverse speed at a given power density and with increasing power density at a given traverse speed.

  • PDF

Spherical Indentation Testing to Evaluate Mechanical Properties In 1Cr-1Mo-0.25V Steel (Spherical Indentation Testing에 의한 1Cr-1Mo-0.25V 강의 기계적 물성 평가)

  • Lee, J.M.;Nam, Y.H.;Nham, S.H.;Lee, S.S.;Lee, O.S.
    • Proceedings of the KSME Conference
    • /
    • 대한기계학회 2001년도 추계학술대회논문집A
    • /
    • pp.266-271
    • /
    • 2001
  • Spherical indentation technique was developed to evaluate the flow properties of metallic materials in carbon steel, stainless steel and alloys, etc. Through the spherical indentation test, differently degraded 1Cr-1Mo-0.25V steel's mechanical properties were observed and compared with conventional standard test data. The flow properties of 1Cr-1Mo-0.25V steels were estimated by analyzing the indentation load-depth curve. To characterize the flow property, we used material yield slope and constraint factor index rather than strain-hardening exponent because the variation of strain-hardening exponent was very little and the data showed irregularly. And the constraint factor's effect was small when the material yield slope was taken into account.

  • PDF

Dosimetric Characteristics of 6 MV Modified Beams by Physical Wedges of a Siemens Linear Accelerator

  • Zabihzadeh, Mansour;Birgani, Mohammad Javad Tahmasebi;Hoseini-Ghahfarokhi, Mojtaba;Arvandi, Sholeh;Hoseini, Seyed Mohammad;Fadaei, Mahbube
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제17권4호
    • /
    • pp.1685-1689
    • /
    • 2016
  • Physical wedges still can be used as missing tissue compensators or filters to alter the shape of isodose curves in a target volume to reach an optimal radiotherapy plan without creating a hotspot. The aim of this study was to investigate the dosimetric properties of physical wedges filters such as off-axis photon fluence, photon spectrum, output factor and half value layer. The photon beam quality of a 6 MV Primus Siemens modified by 150 and 450 physical wedges was studied with BEAMnrc Monte Carlo (MC) code. The calculated present depth dose and dose profile curves for open and wedged photon beam were in good agreement with the measurements. Increase of wedge angle increased the beam hardening and this effect was more pronounced at the heal region. Using such an accurate MC model to determine of wedge factors and implementation of it as a calculation algorithm in the future treatment planning systems is recommended.

A Study in the Heat Resistance Properties of STD61 Steel using the Surface Hardening Method (STD61 강의 내열특성향상을 위한 표면경화에 관한 연구)

  • Lee, Gu-Hyeon
    • 연구논문집
    • /
    • 통권26호
    • /
    • pp.121-132
    • /
    • 1996
  • The carburising surface modification treatment of the die steel has been used for improving wear resistance and heat cycle strength of the die and preventing a pitting on the surface because the carbides are forming in the matrix during carburising. Generally, the hot forging die was used after quenching-tempering treatment or nitriding after quenching-tempering treatment. The nitriding after carburising on the surface of a hot die steel and a wear resistance die steels was suggested by SOUCHARD, JACQUOT. and BUVRON. This surface modification treatment improved the adhesive and abrasive wear resistance and friction coefficient. The process was introduced to the forging die of stainless steel, titanium alloy steel, alloy and medium carbon steel and the physical properties of the die after the treatment were improved. The surface hardening treatment of the nitriding, the carburising, the boriding, and TD process were used to improved the life time of the forging die. Also, the coating process of PVD, CVD and PCVD were used and the hard chromium plating was occasionally used. Therefore, this study analyzed the effects of the carburising time and the conditions of nitriding on STD61 steel. The case depth, the surface hardness, the forming carbide size and shape during overcarburising process on the die steel were also examined.

  • PDF

Numerical simulation on capillary absorption of cracked SHCC with integral water repellent treatment

  • Yao Luan;Tetsuya Ishida
    • Computers and Concrete
    • /
    • 제34권1호
    • /
    • pp.123-135
    • /
    • 2024
  • Strain-hardening cement-based composites (SHCC) under cracked condition exhibits remarkable capillary absorption due to water ingress from multiple cracks. Surface treatment using water repellent agents is an effective way for improving water resistance of SHCC, but the water resistance may remarkably decrease when cracks penetrate impregnation depth. Another way is to add water repellent agents directly into the mixture, offering SHCC integral water repellency even if cracks form later. However, although integral water repellent treatment has been proved feasible by previous studies, there is still lack of simulation work on the treated SHCC for evaluating its durability. This study presents a simulation method for capillary absorption of cracked SHCC with integral treatment based on a multi-scale approach proposed in the authors' previous work. The approach deals with water flows in bulk matrix and multiple cracks using two individual transport equations, respectively, whereas water absorbed from a crack to its adjacent matrix is treated as the mass exchange of the two equations. In this study, the approach is enhanced for the treated SHCC by integrating the influencing of water repellency into the two transport equations as well as the mass exchange term. Using the enhanced approach, capillary absorption of water repellent SHCC under cracked condition is simulated, showing much more reduced water ingress than the untreated concrete, which is consistent with total absorption data from previous tests. This approach is also capable of simulating water spatial distribution with time in treated SHCC reasonably.

Surface Hardening and Wear Properties of AISI 410 Martensitic Stainless Steel by High & Low Temperature Gaseous Nitriding (고온 가스 질화와 저온 가스 질화 방법에 따른 AISI 410 마르텐사이트 스테인레스강의 경화층 및 마모 특성)

  • Son, Seok-Won;Lee, Won-Beom
    • Journal of the Korean institute of surface engineering
    • /
    • 제51권4호
    • /
    • pp.249-255
    • /
    • 2018
  • High temperature and low temperature gaseous nitriding was performed in order to study of the surface hardening and wear properties of the nitrided AISI 410 Martensitic stainless steels. High temperature gaseous nitiridng (HTGN) was carried out using partial pressure $N_2$ gas at $1,100^{\circ}C$ for 10 hour, and Low temperature gaseous nitiridng (LTGN) was conducted in a gas mixture of NH3 and N2 at $470^{\circ}C$ for 10 hour. The nitrided samples were characterized by microhardness measurements, optical microscopy and scanning electron microscopy. The phases were identified by X-ray diffraction and nitrogen concentration was analyzed by GD-OES. The HTGN specimen had a surface hardness of about $700HV_{0.1}$, $350{\mu}m$ of case depth. A ${\sim}50{\mu}m$ thick, $1,250HV_{0.1}$ hard nitrided case formed at the surface of the AISI 410 steel by LTGN, composed nitrogen supersaturated expanded martensite and ${\varepsilon}-Fe_{24}N_{10}$ iron nitrides. Additionally, the results of the wear tests, carried out LTGN specimen was low friction coefficient and high worn mass loss of ball. The increase in wear resistance can be mainly attributed to the increase in hardness and to the lattice distortion caused by higher nitrogen concentration.

A study on the laser surface hardening of SM 45C steel (SM 45C강의 레이저 표면경화처리에 관한 연구)

  • 나석주;김성도;이건이;김태균
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • 제11권1호
    • /
    • pp.53-62
    • /
    • 1987
  • High power lasers provide a controllable and precise energy source in surface transformation hardening. A careful control of the process is needed in order that the surface layer of the material reaches the austenizing temperature, but that it does not melt. In order to achieve this the results of theoretical and experimental studies on the laser surface hardening of a medium carbon steel are described. A two-dimensional computer program, which can be used generally for the determination of transient temperature distributions in welding and heat treatment, was established on the basis of the finite element method. For the confirmation of the accuracy of the numerical analysis, a medium carbon steel (SM 45C) of 5mm thickness was heat-treated with a 1kW CW CO$_{2}$ laser machine, while the traverse speed and the distance from the focal point (defocused distance) were varied. Experimental and numerical results showed a similar tendency in correlations between the hardened zone shape and the process parameters. With increasing beam spot diameter the width and depth of the hardened zone increased for relatively small beam spot diameters, but decreased rapidly after reaching the maximum value, while with increasing traverse speed the width and depth of the hardened zone decreased monotonously. Too small beam spot diameters are to be avoided, since the surface melting would lower the surface hardness and produce an uneven surface which may be unacceptable because of the possible requirement for subsequent machining. It could be observed that for a given traverse speed and laser power input there exists a optimal range of the beam spot diameter, which produce a large width of the hardened zone but no melting on the surface.

Variation in Depth Dose Data between Open and Wedge Fields for 6 MV X-Rays (6MV X선에 있어서 쇄기형 조사야와 개방 조사야 사이의 깊이 선량률의 차이)

  • U, Hong;Ryu, Sam-Uel;Park, In-Kyu
    • Radiation Oncology Journal
    • /
    • 제7권2호
    • /
    • pp.279-285
    • /
    • 1989
  • Central axis depth dose data for 6 MV X-rays, including tissue maximum ratios, were measured for wedge fields according to Tatcher's equation. In wedge fields, the differences in magnitude which increased with depth, field size, and wedge thickness increased when compared with the corresponding open field data. However, phantom scatter correction factors for wedge fields differed less than $1\%$ from the corresponding open field factors. The differences in central axis percent depth dose between two types of fields indicated beam hardening by the wedge filter The deviation of percent depth doses and scatter correction factors between the effective wedge field and the nominal wedge field at same angle was negligible. The differences were less than $3.20\%$ between the nominal or effective wedge fields and the open fields for percent depth doses to the depth 7cm in $6cm{\times}6cm$ field. For larger $(10cm{\times}10cm)$ field size, however, the deviation of percnet depth doses between the nominal or effective wedge fields and the open fields were greater-dosimetric errors were $3.56\%$ at depth 7cm and nearly $5.30\%$ at 12cm. We suggest that the percent depth doses of individual wedge and wedge transmission factors should be considered for the dose calculation or monitor setting in the treatment of deep seated tumor.

  • PDF

Characteristics of Plasma Carburizing Process in Surface Hardening of SCM415 Steel (플라즈마 침탄 공정을 이용한 SCM415강의 표면 경화 특성)

  • Kim, Dae-Wook;Kim, Dong-Won;Lim, Byeong-Soo;Kim, Seuk-Buom
    • Korean Journal of Materials Research
    • /
    • 제8권8호
    • /
    • pp.707-713
    • /
    • 1998
  • The influence of plasma carburizing process on the surface hardness of SCM415 low-alloy steel (0.15% C) was investigated under the various process conditions of gas composition. gas pressure, plasma current density. temperature and time. The effective case depth was found to depend on the amount of methan gas containing carbon. thus the deepest case depth and the uniform hardeness were obtained with the 100% methan gas. The case depth increased with the plasma current density. The effective plasma carburizing temperature of SCM415 steel was found to be higher than 85$0^{\circ}C$, and the case depth was proportional to the square root of carburizing time under the same current density. The bending fatigue strength of the plasma carburized specimen is' higher than those of as- received specimen or reheat-quenched specimen.

  • PDF

Engineering J-Integral Estimation for Internal Axial Surface Cracks in Cylinders (I) -Deformation Plasticity Based Estimation- (실린더에 존재하는 축방향 표면균열에 대한 공학적 J-적분식 (I) - 변형소성에 기초한 방법-)

  • Kim, Jin-Su;Kim, Yun-Jae;Park, Yeong-Jae;Kim, Yeong-Jin
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • 제26권8호
    • /
    • pp.1672-1679
    • /
    • 2002
  • This paper provides an engineering J estimation equation for cylinders with finite internal axial surfacecracks under internal pressure. The proposed equation is the J estimation equation based on deformation plasticity using Ramberg-Osgood (R-O) materials. Based on detailed 3-D FE results using deformation plasticity, plastic influence functions for fully plastic J components are tabulated for practically interesting ranges of the mean radius-to-thickness ratio, the crack depth-to-length ratio, the crack depth-to-thickness ratio. the strain hardening index for the R-O material, and the location along the semi-elliptical crack front. Based on tabilated plastic influence functions, the J estimation equation along the crack front is proposed and validated for R-O materials. Good agreements between the FE results and the proposed J estimation provide confidence in the use of the proposed method to elastic-plastic fracture mechanics of pressurized piping.