• Title/Summary/Keyword: Hardening Concrete

Search Result 462, Processing Time 0.026 seconds

A Study on the Mechanical Properties and Permeability of Permeable Polymer Concrete Covered with Polymer Mortar as a Filter (폴리머 모르터를 필터로 사용한 투수성 폴리머 콘크리트의 역학적 성질과)

  • 박응모;조영국;소양섭
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1998.04a
    • /
    • pp.237-242
    • /
    • 1998
  • Covering mortar as a filter for permeable polymer concrete is necessary for good permeability from filtration continuously. Therefore, this paper is intended as an evaluation of the mechanical properties and permeability of permeable polymer concrete covered with polymer mortar as a filter. An optimum permeable polymer concrete is selected in various mix proportions, and three different polymer mortars were cast immediately following on the casting of the base permeable polymer concrete. And they are tested for compressive and flexural strengths, adhesion in tension, hardening shrinkage and permeability . From the test results, binder and filler contents in mix proportions had a great influence on the permeability of polymer concretes. The mechanical properties of permeable polymer concretes covered with polymer mortars using crushed stone are superior to other filters, and hardening shrinkage is the smallest in filters. It is apparent that adhesion between the base permeable polymer concrete and polymer mortar is affected by the degree of hardening shrinkage. From this study, proper mix proportions can be recommended in the consideration of properties of the permeable polymer concrete.

  • PDF

Nonlinear Analysis of Concrete Using K & C Model (K &C 모델을 이용한 콘크리트 비선형 해석)

  • 김영진;김장호;조병완
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2003.05a
    • /
    • pp.409-414
    • /
    • 2003
  • This paper develops a relatively comprehensive and sophisticated constitutive model of concrete for finite element analysis of concrete structures. The present model accounts for the hydrostatic pressure sensitivity and Lode angle dependence behavior of concrete, not only in its strength criterion, but also in its hardening characteristics. The implementation is carried out through incorporating the developed concrete model in User Subroutine Material(UMAT) of the general-purpose FE program ABAQUS(v.5.8). It is found that the model can sufficiently predict the hardening as well as the softening behaviour of concrete under high confining pressure.

  • PDF

Experimental study on the development of super high early strength concrete using C3S stimulating hardening accelerator (C3S 자극 경화촉진제를 사용한 초조강 콘크리트 개발에 관한 실험적 연구)

  • Min, Tae-Beom;Jo, In-Seong;Lee, Han-Seung
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2014.05a
    • /
    • pp.266-267
    • /
    • 2014
  • In order to develop concrete generating compressive strength of 10MPa~15MPa aging for 6hours in the room temperature curing, Hardening accelerator containing Ca2+ mixed with rapid hardening portland cement containing C3S in quantity. The result was that the more addictive contents of Hardening accelerator is, the more greatly early compressive strength was improved. That's because the composition of Ca(OH)2 was mass-produced at early-ages.

  • PDF

An Experimental Study on the Influence of Heat of Hydration in High Strength Concrete during Hardening Process (고강도콘크리트의 내부온도이력과 경화콘크리트의 특성에 관한 실험적 연구)

  • 윤영수;이승훈;박희민;성상래;백승준;장일영;신성우
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1994.10a
    • /
    • pp.127-132
    • /
    • 1994
  • This study attemps to investigate the influence of heat of hydration occured during hardening on the strength development of high strength concrete. The concrete design strengths of 500kg/$\textrm{cm}^2$ and 700kg/$\textrm{cm}^2$ were considered to simulated the square columns having $80\times80cm$ and $100\times100cm$, respectively. Both standard curing and field curing specimen were prepared at the specified ages, and the cores were drilled out from the structure. The thermal sensors were installed into the specimen to measure the heat of hydration process occurred during the hardening. This paper tries to uncover the relationship between the temperature history of the concrete and strength development. The correlation of core strength and specimen strength with curing condition is also discussed. Further research is desired to enlight the relationship between strength and heat of hydration of high strength concrete.

  • PDF

Nonlinear Analysis of Concrete Using ABAQUS User Material(UMAT) (ABAQUS User Material(UMAT)을 이용한 콘크리트 비선형 해석)

  • 조병완;김장호;김영진
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2003.04a
    • /
    • pp.145-152
    • /
    • 2003
  • This paper develops a relatively comprehensive and sophisticated constitutive model of concrete for finite element analysis of concrete structures. The present model accounts for the hydrostatic pressure sensitivity and Lode angle dependence behavior of concrete, not only in its strength criterion, but also in its hardening characteristics. The implementation is carried out through incorporating the developed concrete model in User Subroutine Material(UMAT) of the general-purpose FE program ABAQUS(v.5.8). It is found that the model can sufficiently predict the hardening as well as the softening behaviour of concrete under high confining pressure.

  • PDF

Modulus degradation of concrete exposed to compressive fatigue loading: Insights from lab testing

  • Song, Zhengyang;Konietzky, Heinz;Cai, Xin
    • Structural Engineering and Mechanics
    • /
    • v.78 no.3
    • /
    • pp.281-296
    • /
    • 2021
  • This article analyzed the modulus degradation of concrete subjected to multi-level compressive cyclic loading. The evolution of secant elastic modulus is investigated based on measurements from top loading platen and LVDT in the middle part of concrete. The difference value of the two secant elastic moduli is reduced when close to failure and could be used as a fatigue failure precursor. The fatigue hardening is observed for concrete during cyclic loading. When the maximum stress is smaller the fatigue hardening is more obvious. The slight increase of maximum stress will lead to the "periodic hardening". The tangent elastic modulus shows a specific "bowknot" shape during cyclic loading, which can characterize the hysteresis of stress-strain and is influenced by the cyclic loading stresses. The deterioration of secant elastic modulus acts a similar role with respect to the P-wave speed during cyclic loading, can both characterize the degradation of the concrete properties.

Preperties of Foamed Concrete using Fly Ash for On-Dol (온돌 채움용 플라이애쉬 경량기포콘크리트의 품질 특성)

  • 고진수;임정수;전명훈;김종엽;손영준;이도헌
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2000.04a
    • /
    • pp.211-216
    • /
    • 2000
  • Foamed concrete is applied ad filling, material of On-dol, bur it has much trouble in controlling the quality because of not establishing the detailed related criteria and recommendation for the construction and quality control practice. Therefore, this study will investigate the as-placed density and air content of formed slurry before hardening and its physical characteristics after hardening, analyzed the relation of each characteristic, and finally provide the proper method for the quality control foamed concrete.

  • PDF

Properties of Cementless Loess Mortar Using Eco-Friendly Hardening Agent (친환경 무기질 고화재를 사용한 무시멘트 황토모르타르의 특성)

  • Jung, Yong-Wook;Kim, Sung-Hyun;Lee, Dong-Gyu
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.3 no.4
    • /
    • pp.355-365
    • /
    • 2015
  • This study examined the fluidity and strength properties, water resistance, durability, and freeze-thaw of cementless loess mortar using an eco-friendly hardening agent. The experimental result indicates that 28 days compressive and flexural strength of the loess mortar was increased regardless of the weathered granite soil and loess mixture ratio as the replacement ratio of the hardening agent increases. The strengths were significantly increased until 14 days regardless of the hardening agent, while the effect on the strengths increasement was relatively low after 14 days. Thus, the strength development of loess mortar concrete was found to be faster than that of the normal concrete. In addition, when the hardening agent of 10% was used, the average flexural strength was 1.7MPa which is insufficient compared to the 28-day flexural strength of 4.5MPa for the paving concrete. However, the flexural strengths of the loess mortar concrete using the hardening agents of 20% and 30% were 4.0MPa and 5.3MPa, respectively. Thus, the hardening agent need to be at least 20% so that the loess mortar can be used for paving concrete. The experiment for water resistance shows that the repeated absorption and dry reduced mass regardless of the mixing ratio of the loess. The maximum length change also decreased with increasing the substitution rate loess mixture ratio and the hardening agent. The result of the freeze-thaw resistance test indicates that the relative dynamic modulus of elasticity at 300 cycle freeze-thaw with the hardening agents of 20% and 30% were 75% and 79%, relatively. Thus, the hardening agent of at least 20% is required to obtain the relative dynamic modulus of elasticity of 60% for the loess mortar.

Strength Characteristics of Epoxy Cement Mortar without Hardening Agent (경화제를 사용하지 않은 에폭시 시멘트 모르타르의 압축강도 특성에 관한 연구)

  • Park, Young-Shik
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.10 no.4
    • /
    • pp.207-211
    • /
    • 2007
  • The durable lifetime of RC structures is shortened by various reasons, which are the generation of cracks in construction and service term, the exterior deterioration according to climatic condition, the surface damage due to chloride attack and the corrosion of reinforced bars. The durability of concrete structures is nevertheless able to be increased by the method and the material of reinforcement and repair. The epoxy resin is widely used for reinforment and repair of concrete because of the superiority in mechanical property, adhesive property, abrasion resistance, impact resistance and chemical resistance. The epoxy cement mortar with hardening agent has a lot of disadvantages that are troublesome mixing work, weakened weatherability and high cost for hardening agent. In this study, the mix proportion of mortar is presented just only with epoxy resin and some admixtures, and the test result of mortar without hardening agent shows the higher strength than the mortar with hardening agent. In the mix proportion, the weight of epoxy resin must be less than 15% of the unit weight of cement, and 10% of unit weight of cement is adequate for the weight of admixtures.

  • PDF

A study on the Shrinkage Properties of precast concrete using Calcium hardening accelerator (칼슘계 경화촉진제를 사용한 프리캐스트 콘크리트의 수축특성에 관한 연구)

  • Min, Tae-Beom;Jo, In-Seong;Lee, Han-Seung
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2014.11a
    • /
    • pp.44-45
    • /
    • 2014
  • On this study, initial crack index was evaluated by performing FEM analysis to crack propagation from hydration heat for development of precast concrete. On the result, as increased the usage of hardening accelerator, initial compressive strength were improved and setting time also was shortened. Additionally, central temperature of concrete was increased, the reaching time for the highest temperature could be shortened. By the result to assess crack index, there was no problem about crack despite of growth of initial high hydration heating. This result guessed because of small size element when analyzed trough FEM, realization for mass concrete's crack index should be performed.

  • PDF