• Title/Summary/Keyword: Hardened Material

Search Result 285, Processing Time 0.024 seconds

Properties of Hardened Mortar Using Chlorine By-pass System Dust a Cement Substitution of Cement (CBS Dust를 시멘트 대체재로 활용하는 모르타르의 경화 특성)

  • Lee, Young-Jun;Lee, Hyuk-Ju;Hyun, Seung-Yong;Kim, Min-Sang;Lee, Dong-Joo;Han, Min-Cheol
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2018.11a
    • /
    • pp.167-168
    • /
    • 2018
  • In this study, use to CBS Dust as substitution of cement was explored. And the CBS Dust was intended to be used as a cement substitute, and the possibility as a potential water hardness stimulant for BS was investigated. Test results indicated that it can be used in with BS for a potential hydroponic stimulant.

  • PDF

A Experimental Study on Early Age Compressive Strength of Cement Mortar Using Anti Freezer and Hardening Accelerator at low temperature (방동제와 경화촉진제를 사용한 저온환경하 모르타르의 초기압축강도에 관한 실험적 연구)

  • Kim, Mok-Kyu;Lee, Han-Seung
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2014.11a
    • /
    • pp.135-136
    • /
    • 2014
  • In this study, the experimental study on the early age compressive strength of cement mortar using anti freezer and hardening accelerator at low temperature was conducted. For this study, all of materials for experiment were kept in a low temperature for 24 hours before mortar mixing. After mortar curing at low temperature, compressive strength was measured at the early ages. Furthermore, properties of hardened cement material was analysed using TG-DTA and MIP.

  • PDF

An Fundamental Study on the Application of Lib-lath form (리브라스 거푸집의 활용 방안에 관한 실험적 연구)

  • Nam Jung Min;Kim Woo Sang;Park Moo Young;Jun Pan Keun;Kim Sung-Sik;Jung Sang-Jin
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.11a
    • /
    • pp.785-788
    • /
    • 2004
  • In order for concrete as a basic material constituting reinforced concrete structure to meet the required performance, it is necessary to satisfy various requirements in concrete construction. Among them, form work has significant effects not only on the process of molding fresh concrete but also on the quality and performance of hardened concrete. Recently, the decrease and aging of form workers is becoming a great problem in the construction industry and, as a result, it is required to rationalize form works and reduce labor costs for employing form workers.

  • PDF

A Numerical Method for Macro-fiber Distribution and Orientation In Hardened Concrete Components

  • Li, Mao;Kim, Jin-man;Choi, Hong-Beom
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2017.11a
    • /
    • pp.85-86
    • /
    • 2017
  • Fiber reinforced concrete as a construction material has been widely used. Fibers, as the reinforced component, the physical properties and the distribution influence the engineering properties of the composite. To illustrate the engineering properties, fiber distribution and orientation are necessary. Steel fibers can be easily captured by X-ray, but it is difficult them to express being numerical because they don't show as perfect circular shape on the grinding face. To get the more exact information for this, the numerical method for the orientation and distribution of fibers have to be more elaborately. This paper presents a possible method which makes the calculate for orientation possible.

  • PDF

A Study on the Analysis of 3 Dimensional Substrate Behaviour of Complex Environmental Deterioration and the Analysis of Results (복합열화분석용 3차원 거동대응성 시험을 통한 결과분석)

  • Song, Je-Young;Seo, Hyun-Jae;Kim, Bum-Soo;Choi, Eun-Kyu;Lee, Jung-Hun;Oh, Sang-Keun
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2017.11a
    • /
    • pp.219-220
    • /
    • 2017
  • Current domestic waterproofing market in Korea mainly uses single-ply waterproofing materials comprised of coatings or waterproof sheets and two or more-ply composite waterproofing methods. In order to evaluate these types of composite waterproofing systems, a new test equipment and method that incorporates various deterioration conditions (joint displacement, chemical exposure, water pressure etc) was developed. In a comparison testing, the results showed that flexible type materials have higher response performance towards joint displacement than the hardened material. Furthermore, the importance of securing the stability of the waterproofing method in the vulnerable over-lap joint areas of waterproofing sheets is emphasized.

  • PDF

Hybrid Microstructure and Mechanical Properties of HRS Processed SUS316L and Titanium Materials

  • Fujiwara, Hiroshi;Ohta, Koichi;Noro, Atsushi;Ameyama, Kei
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09a
    • /
    • pp.540-541
    • /
    • 2006
  • SUS316L stainless steel, commercial pure Titanium and Ti-6Al-4V alloy powders applied by Mechanical Milling (MM) process are sintered by Hot Roll Sintering (HRS) process. Microstructure and mechanical properties of those HRS materials is investigated. The microstructures of materials produced by HRS process consist of fine grains and work-hardened structure, that is, the hybrid microstructure. Tensile test of the HRS material demonstrated the good mechanical properties. These results show that the HRS process is very effective to the improvement of mechanical properties in the SUS316L stainless steel, commercial pure Titanium and Ti-6Al-4V alloy.

  • PDF

Sliding Wear and Corrosion Resistance of Copper-based Overhead Catenary for Traction Systems

  • Kwok, C.T.;Wong, P.K.;Man, H.C.;Cheng, F.T.
    • International Journal of Railway
    • /
    • v.3 no.1
    • /
    • pp.19-27
    • /
    • 2010
  • In the present study, the electrical sliding wear and corrosion resistance of pure copper (Cu) and six age-hardened copper alloys (CuCr, CuZr, CuCrZr, CuNiSiCr, CuBe and CuBeNi) were investigated by a pin-on-disc tribometer and electrochemical measurement. Various copper-based alloys in the form of cylindrical pin were forced to slide against a counterface stainless steel disc in air under unlubricated condition at a sliding velocity of 31 km/h under normal load up to 20 N with and without electric current. The worn surface of and wear debris from the specimens were studied by scanning electron microscopy. Both mechanical wear and electrical arc erosion were the wear mechanisms for the alloys worn at 50 A. Owing to its good electrical conductivity, high wear and corrosion resistance, CuCrZr is a promising candidate as the overhead catenary material for electric traction systems.

  • PDF

Elaboration and characterization of fiber-reinforced self-consolidating repair mortar containing natural perlite powder

  • Benyahia, A.;Ghrici, M.;Mansour, M. Said;Omran, A.
    • Advances in concrete construction
    • /
    • v.5 no.1
    • /
    • pp.1-15
    • /
    • 2017
  • This research project aimed at evaluating experimentally the effect of natural perlite powder as an alternative supplementary cementing material (SCM) on the performance of fiber reinforced self-consolidating repair mortars (FR-SCRMs). For this purpose, four FR-SCRMs mixes incorporating 0%, 10%, 20%, and 30% of natural perlite powder as cement replacements were prepared. The evaluation was based on fresh (slump flow, flow time, and unit weight), hardened (air-dry unit weight, compressive and flexural strengths, dynamic modulus of elasticity), and durability (water absorption test) performances. The results reveal that structural repair mortars confronting the performance requirements of class R4 materials (European Standard EN 1504-3) could be designed using 10%, 20%, and 30% of perlite powder as cement substitutions. Bonding results between repair mortars containing perlite powder and old concrete substrate investigated by the slant shear test showed good interlocking justifying the effectiveness of these produced mortars.

An Experimental Study for Basic Properties of Mixed Concrete from Multiple Suppliers (콘크리트 혼용타설에 따른 기초 물성에 관한 실험적 연구)

  • Lee, Woo-Jin;Kim, Dong-Soo;Jung, Sung-Hoon;Yang, Hyun-Min
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2022.11a
    • /
    • pp.59-60
    • /
    • 2022
  • According to the recent issue regarding the shortage of concrete supply, it is common to appoint various concrete suppliers and allow mixed pouring according to the specification requirements. Moreover, if the concrete is mixed inevitably a strength and property test is carried out for verification. Therefore, in this research, multiple concrete suppliers were selected and each required raw material was collected for the test of all variable mixed design. Through the test, the property of the unhardened and hardened concrete was quantitatively evaluated.

  • PDF

Surface Treatment in Edge Position of Spheroidal Cast Iron for Mold Materials by Using High Power Diode Laser (High Power Diode Laser을 이용한 금형재료용 구상화 주철의 모서리부 표면처리)

  • Hwang, Hyun-Tae;Song, Hyeon-Soo;Kim, Jung-Do;Song, Moo-Keun;Kim, Young-Kuk
    • Korean Journal of Materials Research
    • /
    • v.19 no.9
    • /
    • pp.457-461
    • /
    • 2009
  • Recently, metal molding has become essential not only for automobile parts, but also mass production, and has greatly influenced production costs as well as the quality of products. Its surface has been treated by carburizing, nitriding and induction hardening, but these existing treatments cause considerable deformation and increase the expense of postprocessing after treatment; furthermore, these treatments cannot be easily applied to parts that requiring the hardening of only a certain section. This is because the treatment cannot heat the material homogeneously, nor can it heat all of it. Laser surface treatment was developed to overcome these disadvantages, and, when the laser beam is irradiated on the surface and laser speed is appropriate, the laser focal position is rapidly heated and the thermal energy of surface penetrates the material after irradiation, finally imbuing it with a new mechanical characteristic by the process of self-quenching. This research estimates the material characteristic after efficient and functional surface treatment using HPDL, which is more efficient than the existing CW Nd:YAG laser heat source. To estimate this, microstructural changes and hardness characteristics of three parts (the surface treatment part, heat affect zone, and parental material) are observed with the change of laser beam speed and surface temperature. Moreover, the depth of the hardened area is observed with the change of the laser beam speed and temperature.