• Title/Summary/Keyword: Hardened Cement Paste

Search Result 91, Processing Time 0.033 seconds

Physical Properties of Ultrafine Ash Blended Cement (초미분말 애시를 혼합한 시멘트의 물성)

  • Yoo, Dong-Woo;Byun, Seung-Ho;Song, Jong-Taek
    • Journal of the Korean Ceramic Society
    • /
    • v.44 no.9
    • /
    • pp.489-495
    • /
    • 2007
  • Effects of ultrafinely ground ash on the rheological properties of cement paste were investigated. Also compressive strength development and setting time of ultrafine ash blended cement mortar were investigated in the study. A sample with silica fume was included for comparison. According to the results of ultra fine ash blended cement paste in the lower W/B ratio, the fluidity were high, and the setting time was a little retarded. And the compressive strength of ultrafine ash blended mortar was increased in the long term. In the case of hardened cement paste at 28 days, $Ca(OH)_2$ contents was decreased in order of control, ultrafine ash, silica fume blended cement due to difference of the pozzolanic reaction.

The Effect of Fluorine Based Emulsion on the Watertightness Properties of Portland Cement (시멘트 수밀성에 대한 불소계 에멀젼의 영향)

  • Kang, Hyun Ju;Song, Myong Shin;Song, Su Jae;Park, Su Haeng
    • Applied Chemistry for Engineering
    • /
    • v.20 no.5
    • /
    • pp.505-510
    • /
    • 2009
  • It is well known that the properties of concrete such as the compressive strength, water permeability, water tightness and durability are affected by micro-structure in hardened cement paste. Especially, for durability of concrete, watertightness of cementitious materials is the most critical property among various properties. Recently, many types of material such as organic and/or inorganic materials are used for watertightness of concrete. In this study, we examined the effect of fluorine-based emulsion on watertightness property. And we also discussed the change of microstructure and formation of hydrates in hardened cement paste by the addition of fluorine-based emulsion. Cement paste with fluorine-based emulsion showed improvement of watertightness by the surface activation of cement paste and by formation of $CaF_2$ fine crystals in cement pore structure.

Evaluation on Hydrophobicity of the Surface of Hardened Cement Paste Produced by PDMS Mold (PDMS 몰드를 이용하여 제작된 시멘트 경화체 표면의 소수성 평가)

  • Jin, Da-Hyung;Liu, Jun-Xing;Bae, Sung-Chul
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2021.11a
    • /
    • pp.168-169
    • /
    • 2021
  • A hydrophobic surface increases the contact angle between water and cement paste. There are two methods to increase water contact angle, i.e. lowering the surface energy and adjusting the surface roughness of concrete. The hydrophobicity of concrete can be quantitatively evaluated according to the chemical and physical properties of the solid surface. So far, researches have shown the chemical properties of hydrophobic concrete, however it has not covered how to control surface. This study demonstrated the hydrophobic cement paste prepared by low-resolution molds printed with a 3D printer that exhibit rough surface. Thus, we presented the most hydrophobic characteristics of mold.

  • PDF

Analysis of the Changes of composition of Hardened Cement at High Temperature by X-Ray Diffraction (X-선 회절 분석을 통한 고온 피해 시멘트 경화체의 성분 변화 분석)

  • Ji, Woo-Ram;Park, Ji-Woong;Shin, Ki-Don;Lee, Gun-Cheol;Heo, Young-Sun
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2017.11a
    • /
    • pp.113-114
    • /
    • 2017
  • In this study, the change of composition of cement hardened at high temperature through XRD was observed. The specimen was made of cement paste and the heating rate condition was applied at rapid thermal annealing (10.0℃ / min). The decrease of calcium hydroxide was not confirmed, but the calcium carbonate tended to be impossible or decreased after 800℃. Calcium silicate and larnite were observed to increase with increasing temperature. It is considered that silicic acid, which is a stable structure due to the decomposition of calcium silicate, is changed into a phase such as lime.

  • PDF

Freezing and Thawing Resistance of Hardened Cement Paste Containing Blending Materials (혼합재를 사용한 시멘트경화체의 동결융해 저항성)

  • 이양수;김정환;최상흘;한기성
    • Journal of the Korean Ceramic Society
    • /
    • v.27 no.3
    • /
    • pp.437-443
    • /
    • 1990
  • The resistivity of cement paste and mortar for freezing and thawing was investigated for densifying the structure of cement paste and mortor, slag, diatomaceous earth and fly ash as blending materials and superplasticizer were used, and air entraining agent was added to absorb the volume expansion by freezing and thawing reaction. And then the specimens were subjected to freeze-thaw in water. When both of air entraining agent and superplasticizer as additives were mixed to specimens, their freeze-thaw resistance was enhanced by the air entraining effect and the water reduction effect. When 4% of slag were added to cement, freeze-thaw resistance was especially excellent. In addition, it was found that the specimens with blending materials were more influenced by curing periods than those without admixture. It is assumed that the curing periods contribute to exibit the potential hydraulicity and pozzolanic reactivity of blending materials and to densify their texture.

  • PDF

A Study on the Behavior of Chloride Ion in Hardened Cement Paste at Defferent Stages of Curing (재령에 따른 시멘트 경화체내 염화물 이온의 거동에 관한 연구)

  • 문소현;소승영;소양섭
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1998.10c
    • /
    • pp.185-190
    • /
    • 1998
  • Corrosion of steel reinforcement is the most significant factor of deterioration in reinforced concrete structures. Chloride ion is considered one of the most common culprits on the corrosion of steels in concrete. The main objective of this study is understanding behavior of chloride ion in hardened cement pastes at different stages of curing. Cement pastes with water-cement ratio of 0.5 are allowed to hydrate in sealed containers for 28, 70, 180 days. And than pore solution is expressed. It was found that the $Cl^-$ concentrations in pore solution is decreased with increasing curing time in all Nacl addition level, the $OH^-$ concentrations is increased to 70 days but decrease at 180 days in all Nacl addition level. The $Cl^-$/$OH^-$ in pore solution is increased with increasing curing time in all Nacl addition level, however $Cl^-$/$OH^-$ of maximum Nacl addition level(Nacl 0.54% by weight of cement) is under the onset of depassivation level 0.3.

  • PDF

Resistance to Sea Water of Hardened Cement with Calcium Sulfoaluminate Type Expansive Additives(I) (칼슘 설포알루미네이트계 팽창재를 혼합한 시멘트 경화체의 내해수성(I))

  • 전준영;송종택
    • Journal of the Korean Ceramic Society
    • /
    • v.40 no.3
    • /
    • pp.234-240
    • /
    • 2003
  • Hardened cement pastes of OPC which contains 10 wt% CSA type expansive additives were immersed in aqueous solution of 10 wt% MgS $O_4$.7$H_2O$ and then investigated by compressive strength, XRD. SEM and DSC etc.. According to the results including the hydration products and the microstructure of the hardened paste, the case of CSA type expansive additives[No. 6(C/(equation omitted) : 2.29, A/(equation omitted) : 0.16)] prepared from raw materials increased the resistance to $Mg^{2+}$, S $O_4$$^{2-}$ ion diffusion than that of OPC paste due to the densification by the formation of fine ettringite in the first stage and the hydrates according to $\beta$-C$_2$S hydration in the late period.

The Experimental Study on the Influence of Relation between Cement Paste and Aggregate Volume to Effect the High Folwing and Engineering Properties of High Flowing Concrete (고유동콘크리트의 유동특성 및 공학적 특성에 미치는 시멘트페이스트용적 및 골재용적과의 관계에 관한 실험적 연구)

  • 김규용;최희용;강희관;김무한
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1996.10a
    • /
    • pp.301-307
    • /
    • 1996
  • High flowing concrete has been made using a combination of much amount cementitious materials and addition of SP agents, so that it makes possible to high flowing properties of fresh concrete. In the fluid mechanical and rheological point of view, high flowing concrete is affected on the relation between cement paste and aggregate of volume. In this experimental study, it is measured high flowing concrete of slump-flow about 65$\pm$5cm according to 0.54~0.80 of volume ratio and to analysed the properties of high flowing concrete in fresh and hardened concrete. It is the aim of this study to consider the affection of high flowing properties accoring to cement paste to aggregate ratio of volume on the combination of concrete.

  • PDF

Cement Paste Hardened Body with High Temperature Exposure Time Fourier Transform Infrared Spectroscopy (고온 노출 시간에 따른 시멘트 페이스트 경화체의 푸리에 변환 적외분광 분석)

  • Kim, Min-Hyouck;Cho, Hyeon-Seo;Lee, Gun-cheol
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2019.05a
    • /
    • pp.120-121
    • /
    • 2019
  • In this study, FT-IR analysis was performed by exposing cement paste to high temperature in order to characterize the change of hydration behavior of concrete structure damaged by fire accident. As the holding time increased, the Al-O vibration region increased due to the increase of Si-O symmetric Ca2(SiO4) and Brownilerite, and the OH stretching region tended to increase due to thermal decomposition of Ca(OH)2.

  • PDF

Modeling of Mechanical Properties of Concrete Mixed with Expansive Additive

  • Choi, Hyeonggil;Noguchi, Takafumi
    • International Journal of Concrete Structures and Materials
    • /
    • v.9 no.4
    • /
    • pp.391-399
    • /
    • 2015
  • This study modeled the compressive strength and elastic modulus of hardened cement that had been treated with an expansive additive to reduce shrinkage, in order to determine the mechanical properties of the material. In hardened cement paste with an expansive additive, hydrates are generated as a result of the hydration between the cement and expansive additive. These hydrates then fill up the pores in the hardened cement. Consequently, a dense, compact structure is formed through the contact between the particles of the expansive additive and the cement, which leads to the manifestation of the strength and elastic modulus. Hence, in this study, the compressive strength and elastic modulus were modeled based on the concept of the mutual contact area of the particles, taking into consideration the extent of the cohesion between particles and the structure formation by the particles. The compressive strength of the material was modeled by considering the relationship between the porosity and the distributional probability of the weakest points, i.e., points that could lead to fracture, in the continuum. The approach used for modeling the elastic modulus considered the pore structure between the particles, which are responsible for transmitting the tensile force, along with the state of compaction of the hydration products, as described by the coefficient of the effective radius. The results of an experimental verification of the model showed that the values predicted by the model correlated closely with the experimental values.