• 제목/요약/키워드: Hardened

Search Result 1,265, Processing Time 0.023 seconds

Durability and Strength of Ternary Blended Concrete Using High Early Strength Cement (조강(早彈)시멘트를 사용(使用)한 3성분계(性分系) 콘크리트의 강도(彈度) 및 내구특성(耐久特性))

  • Hong, Chang-Woo;Jeong, Won-Kyong
    • Resources Recycling
    • /
    • v.19 no.5
    • /
    • pp.50-57
    • /
    • 2010
  • Ternary blended concrete(TBC), which contains both fly ash and granulated blast furnace slag, has an initial cost effective and is environment friendly. Furthermore, it has a lot of technical advantages such as the improvement of long term compressive strength, high workability, and the reduction of hydration heat. However, as the use and study on the performance of ternary blended concrete is limited, it is low short term compressive strength. This study was performed to evaluate the characteristics which are a long and short term compressive strengths, permeability and chemical attacks resistance of hardened high early concrete containing slag powder and fly-ash using high early strength cement(HE-TBC). Replacement rate of FA is fixed on 10% and replacement rate of slag powder are 0%, 10%, 20% and 30%. The test results showed that compressive and flexural strength of HE-TBC increased as the slag contents increased from 0% to 30% at the short term of curing. The permeability resistance of HE-TBC(fly ash 10%, blast 30%) was extremely good at the short and long terms. However, high early strength ternary blended concrete had weak on carbonation of chemical attack.

Physical Properties Testing and Practical Applications of Restoration Materials Made with Extra Hard Stone and Metakaolin (초경석고와 메타카올린 혼합재료의 물성실험 및 적용)

  • Kim, Hyunsuk;Lee, Haesoon
    • Conservation Science in Museum
    • /
    • v.17
    • /
    • pp.101-116
    • /
    • 2016
  • Ceramic cultural artifacts restored with gypsum-based materials are prone to decay over time due to gypsum's natural absorption and release of atmospheric moisture, often leading to distortion and peeling of painted layers. This study proposes a new restoration material which utilizes extra hard stone, significantly superior in strength to regular gypsum. In order to enhance its physical properties and make it suitable for restoration of ceramics, extra hard stone is mixed with metakaolin. This mixture far surpasses regular gypsum in compressive strength(119MPa vs. 26MPa) while also maintaining a much lower wear rate(0.88% vs. 2.53%). Furthermore, the water absorption rate(2.9%) of the mixed material is over five times lower than that of regular gypsum(17.2%). When examined using a SEM(Scanning Electron Microscope), this mixture also proved superior to extra hard stone in terms of hardened density. The addition of metakaolin increases the mixture's strength and water resistance over that of extra hard stone and also improves its surface density, making it ideal for the restoration of ceramics. It has already been used to repair ceramic objects in the Museum's collection: Clay basin(sinan 18892), Buncheong ware bottle with incised peony design(jubsu 2034), Buncheong ware bowl with chrysanthemum(jubsu 1730). Results thus far have shown the mixture to be easy to inject and layer as well as harden into an even surface, which allows for smooth application of paint for color matching.

Effect of Fluorine-Silicate Hybrid Based Crack Reducing Agent on the Resistance for Shrinkage Crack and Gas Permeability of Concrete (불소-실리카 복합형 균열저감제가 콘크리트의 수축균열 저항성 및 투기성에 미치는 영향)

  • Lee, Man-Ik;Park, Jong-Hwa;Nam, Jae-Hyun;Kim, Do-Su;Kim, Jae-On
    • Journal of the Korea Concrete Institute
    • /
    • v.18 no.5 s.95
    • /
    • pp.631-637
    • /
    • 2006
  • In this study, fundamental properties such as fresh and hardened performance of concrete mix(specification : 25-24-18) added fluorine-silicate hybrid based crack reducing agent(FS) were measured. Addition of FS ranged from 0.5% to 2.0% at intervals 0.5% based on cement weight. Adequate dosage(0.5%) of FS derived from basic properties measurements applied and compared resistance for shrinkage crack. The permeability of concrete in the absence(24-S-0.0) and presence(24-S-0.5) of evaluated at a mock-up sized concrete. Concrete added FS improved resistance for shrinkage crack and consequently crack number, length and area decreased to $50{\sim}74.4%$ compared non-added. As well, by the addition of FS, the resistance for permeability and penetration depth to concrete surface region increased 67% and 40%, respectively. Therefore it was confirmed that shrinkage crack resistance and permeability of concrete could be improved by the addition of FS.

Decision of Optimized Mix Design for Lightweight Foamed Concrete Using Bottom Ash by Statistical Procedure (통계적 방법에 의한 바텀애쉬를 사용한 경량기포 콘크리트의 최적배합 결정)

  • Kim, Jin-Man;Kwak, Eun-Gu;Cho, Sung-Hyun;Kang, Cheol
    • Journal of the Korea Concrete Institute
    • /
    • v.21 no.1
    • /
    • pp.3-11
    • /
    • 2009
  • The increased demand and consumption of coal has intensified problems associated with disposal of solid waste generated in utilization of coal. Major utilization of coal by-products has been in construction-related applications. Since fly ash accounts for the part of the production of utility waste, the majority of scientific investigations have focused on its utilization in a multitude of use, while little attention has been directed to the use of bottom ash. As a consequence of this neglect, a large amount of bottom ash has been stockpiled. However, the need to obtain safe and economical solution for its proper utilization has been more urgent. The study presented herein is designed to ascertain the performance characteristics of bottom ash, as autoclaved lightweight foamed concrete product. The laboratory test results indicated that tobermorite was generated when bottom ash was used as materials for hydro-thermal reaction. According to the analysis of variance, at the fresh state, water ratio affects on flow and slurry density of autoclaved lightweight foamed concrete, but foam ratio influences on slurry density, while, at the hardened state, foam ratio affects on the density of dry and the compressive strength but doesn't affect on flexural and tensile strength. In the results of response surface analysis, to obtain target performance, the most suitable mix condition for lightweight foamed concrete using bottom ash was water ratio of 70$\sim$80% and foaming ratio of 90$\sim$100%.

Evaluation on Chloride Binding Capacity of Mineral Mixed Paste Containing an Alkaline Activator (알칼리 활성화제를 사용한 무기질 혼합 페이스트의 염화물이온 고정화 평가)

  • Cho, Gyu-Hwan;Yeo, In-Hwan;Ji, Dong-Hun
    • Journal of the Korea Concrete Institute
    • /
    • v.28 no.2
    • /
    • pp.157-165
    • /
    • 2016
  • It is possible to achieve high strength ranging from 40 MPa to 70 MPa in alkali-activated slag concrete (AASC), and AASC is also known to have a finer pore structure due to its high latent hydraulicity and fineness of slag cement, which makes it difficult for chloride ions to penetrate. Electrophoresis is mostly used to calculate the effective diffusion coefficient of chloride ions, and then to evaluate resistance to salt damage. Few studies have been conducted on the fixation capacity of chloride ions in AASC. For this reason, in this study the chloride fixation within the hardened paste was evaluated according to the type and the amount of alkaline activators. As a result, it was revealed that among the test specimens, the chloride fixation was greatest in the paste containing $Na_2SiO_3$. In addition, it was found that as more activator was added, a higher level of chloride fixation was observed. Through this analysis, it can be concluded that the type and the amount of alkaline activators have a high correlation with the amount of C-S-H produced.

Engineering Properties of Cement Composite Panel for Outer Wall Depending on the Types and Combinations of Insulation Materials (단열소재 종류 및 조합에 따른 외벽단열 패널용 시멘트 복합체의 공학적 특성)

  • Han, Min-Cheol;Cho, Byoung-Young;Lee, Gun-Cheol;Noh, Sang-Kyun;Jeon, Kyu-Nam
    • Journal of the Korea Institute of Building Construction
    • /
    • v.11 no.2
    • /
    • pp.127-135
    • /
    • 2011
  • In this study, the engineering characteristics of outer wall insulation panels according to type of insulation materials, their combination, and the contents of insulation materials were tested. Vermiculate, ceramic bead, perlite and expanded polystyrene were used as insulation materials. Flexural strength and thermal conductivity depending on the insulation materials used were measured. It was found that the flow of fresh mortar significantly decreased with an increase in the contents of insulation materials. In terms of the effect of insulation materials on thermal conductivity, an increase in insulation materials resulted in a decrease of thermal conductivity. In particular, PL and EPS, when used together, have lower thermal conductivity than other materials. Regarding the flexural strength of the hardened mortar, the strength showed a tendency to gradually decrease according to the increase in contents of insulation materials, compared to that of the plain mortar. In terms of the flexural strength depending on various types of insulation materials and its combination, it was found that the flexural strength of cement mortar containing 3% of vermiculate(V)+ceramic bead(CB)+perlite(PL) was the highest among the specimens tested.

Properties of Ternary or Quaternary High Strength Concrete Using Silica Fume & Meta Kaolin (실리카퓸과 메타카올린을 사용한 다성분계 고강도콘크리트의 특성)

  • Park, Cho-Bum;Kim, Ho-Su;Jeon, Jun-Young;Kim, Eun-Kyum;Ryu, Deug-Hyun
    • Journal of the Korea Concrete Institute
    • /
    • v.20 no.3
    • /
    • pp.307-315
    • /
    • 2008
  • In this study, it is investigated the properties of high strength concrete using mineral admixture, on the purpose of use of meta kaolin for the substitutive materials to silica fume which is so expensive. The plain mixtures are 3 degrees which are ordinary portland cement, blast furnace slag cement and OPC included fly ash 20%, and silica fume and meta kaolin are substituted for the each plain mixtures in the range of 20%. The results of experiment showed as follows. In case of silica fume was only used, the viscosity and slump flow of fresh concrete were much decreased, on the contrary air content increased. But as usage of meta kaolin increased, to being increase the viscosity of fresh concrete, slump flow increased and air content and usage of super-plasticizer were decreased. Accordingly the workabilities of concrete were against tendency between silica fume and meta kaolin. The compressive strength, velocity of ultrasonic pulse and unit weight were increased according to usage of meta kaolin, the properties of hardened concrete were judged that they are affected with air content of fresh concrete, so it is very important to control air content of high strength concrete. Therefore, the use of meta kaolin is prospected to the substitutive material of silica fume, in case of using silica fume and meta kaolin, it is judged that the optimum usage of silica fume and meta kaolin is about 10% respectively, considering workability and strength of concrete.

Shape Improvement and Optimum Gradation of Dry Processed Bottom Ash for Lightweight Mortar (경량 모르터용 건식공정 바텀애시의 입형 개선 효과와 최적 입도)

  • Choi, Hong-Beom;Kim, Jin-Man;Sun, Jung-Soo;Han, Dong-Yeop
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.3 no.1
    • /
    • pp.7-14
    • /
    • 2015
  • The aim of this research is suggesting dry processed bottom ash as a new and economical source of lightweight aggregate for mortar and concrete. The dry process of bottom ash is an advance method of water-free and no chloride because only cooled down by double dry conveyer belt systems. Furthermore, because of relatively slow cooling down process helps burning up the remaining carbon in bottom ash. Using this dry process bottom ash, to evaluate the feasibility of using as a lightweight aggregate for mortar and concrete, two-phase of experiments were conducted: 1) improving shape of the bottom ash, and 2) controlling grade of the bottom ash. From the first phase of experiment, additional abrasing process was conducted for round shape bottom ash, hence improved workability and compressive strength was achieved while unit weight was increased comparatively. Based on the better shape of bottom ash, from the second phase, various grades were adopted on cement mortar, standard grade showed the most favorable results on fresh and hardened properties. It is considered that the results of this research contribute on widening sustainable method of using bottom ash based on the dry process and increasing value of bottom ash as a lightweight aggregate for concrete.

Quality Properties of Zero Cement Blast Furnace Slag Mortar Using the Recycled Fine Aggregates Depending on Mixing Factors (순환잔골재를 사용한 무 시멘트 고로슬래그 모르터의 배합요인에 따른 품질특성)

  • Han, Cheon-Goo;Son, Seok-Heon;Park, Kyung-Taek
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.5 no.3
    • /
    • pp.70-77
    • /
    • 2010
  • This study is to investigate experimentally the influence of mixing factors, such as a mortar mix proportion of non-cement mortar, flow, and W/B, on quality characteristics of blast furnace slag powder mortar incorporating dry type recycled fine aggregates. In the characteristics of fresh mortar, the W/B increased according to the increase in the flow due to the increase in water contents, but air contents decreased due to loss of air contrary to the increase in the W/B. In the case of hardened mortar, the compressive strength showed a decrease due to the highly determined W/B inversely according to the increase in the flow through the entire age in which the compressive strength increased proportionally according to the increase in the B/W. Also, the increasing rate of such compressive strength increased more largely due to the latent hydraulic property of the BS according to the passage of the age. The flexural strength at the age of 28 days according to the increase in the B/W represented a similar level in strength values without any increases. The flexural strength for the compressive strength was distributed as a range of 1/2 ~ 1/3 and that showed a higher range than that of conventional concretes.

  • PDF

Zona Hardening of Mouse Oocytes Undergone Meiotic Resumption In Vivo (체내에서 성숙이 재개된 생쥐난자의 투명대 경화)

  • Kim, Ji-Soo;Kim, Hae-Kwon;Park, Jong-Min;Lee, Seung-Jae;Lee, Joon-Young;Kim, Moon-Kyoo
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.24 no.1
    • /
    • pp.1-11
    • /
    • 1997
  • It is well known that the zona pellucidae of mouse oocytes become "hardened" when they are allowed to mature in vitro in the absence of serum components. To see if oocytes already undergone meiotic resumption in vivo exhibit similar zona hardening, hardening of ZP of cumulus-enclosed oocytes(CEOs) was examined after culture in vitro since their release from follicles various hours after hCG injection. When CEOs matured in vivo for 3h or longer were subjected to culture in vitro for 14h with BSA alone, zona hardening was significantly reduced compared to those cultured in vitro from the begining of maturation. However, when CEOs matured in vivo for 5h were freed from cumulus cells and then cultured in vitro with BSA alone, little reduction of zona hardening was observed. Preincubation of CEOs for 5h with fetuin, one of the well known inhibitor of in vitro zone hardening, did not prevent zona hardening during its subsequent culture of CEOs for 14h without fetuin. However, when CEOs precultured with both fetuin and PMSG for 5h and then further cultured with BSA alone for 14h, zona hardening was dramatically reduced. Under these conditions, the expansion of cumulus cell was observed. In addition, CEOs cultured with both BSA and dbcAMP to prevent their meiotic resumption showed a significant increase of zona hardening. Whether the observed zona hardening was correlated with the conversion of ZP2 to $ZP2_{f}$ was examined. Zona pellucida, isolated from CEOs matured for 5h in vivo and then further cultured with BSA alone was subjected to SDS-PAGE. Most of ZP2 molecules from these CEOs did not undergo conversion from ZP2 to $ZP2_{f}$. From these results, it is concluded that CEOs undergone meiotic resumption in vivo do not exhibit zona hardening when they were subsequently cultured in vitro without serum components. It appears that cumulus cells play an important role in this phenomenon.

  • PDF