• Title/Summary/Keyword: Hard disk arm

Search Result 21, Processing Time 0.035 seconds

Dynamic Response Measurement of the Head Arm Assembly of a Hard Disk Drive by Numerical Analysis and Experiments

  • Parlapalli, Madhusudhana R;Bin, Gu;Dongwei, Shu;Fujii, Yusaku
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.9 no.4
    • /
    • pp.22-25
    • /
    • 2008
  • The dynamic response of the head arm assembly (HAA) of a hard disk drive to an impact load was obtained from a 3D non-linear finite element model using ANSYS/LS-DYNA and from experiments using a modified levitation mass method (LMM). In the finite element model, the impact load was created by modeling the mass as a rigid body and making it collide with the HAA. The velocity, displacement, acceleration, and inertial force of the mass were then obtained from the time history data of the finite element analysis. In the LMM, a mass that was levitated with an aerostatic linear bearing, and hence encountered negligible friction, was made to collide with the actuator arm, resulting in a dynamic bending test for the arm. During the collision, the Doppler frequency shift of the laser beam reflected from the mass was accurately measured with an optical interferometer. The velocity, displacement, acceleration, and inertial force of the mass were accurately calculated from the measured time-varying Doppler frequency shift. A good correlation between the experimental data and FEA results was observed. The FEA was also used to investigate the dynamic response of the HAA to impact by different masses.

Cutting Characteristics of Actuator Arm in Hard Disk Drive (하드디스크 드라이브용 액츄에이터 암의 절삭 가공 특성)

  • Lee Jae-Woo
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.11-12
    • /
    • 2006
  • Actuator arm of HDD were machined with the slitting saw of tungsten carbide to clarify the cutting characteristics in terms of the roughness of machined surface, the burr size and the tool wear. An improved performance in all view of the surface machined, the tool life and the cutting efficiency was obtained at the cutting speed of 4,000rpm with the feed of 300m/min. The tool life increases with increasing the t/T value, whereas surface roughness decreases. The tool with alternate type of B and C edges has an effect to decrease the burr size.

  • PDF

Topology Optimization of a HDD Actuator Arm

  • Chang, Su-Young;Cho, Ji-Hyon;Youn, Sung-Kie;Kim, Cheol-Soon;Oh, Dong-Ho
    • Computational Structural Engineering : An International Journal
    • /
    • v.1 no.2
    • /
    • pp.89-96
    • /
    • 2001
  • A study on the topology optimization of a Hard-Disk-Driver(HDD) actuator arm is presented. The purpose of the present wert is to increase the natural frequency of tole first lateral mode of the HDD actuator arm under the constraint of total moment of inertia, so as to facilitate the position control of the high speed actuator arm. The first lateral mode is an important factor in the position control process. Thus the topology optimization for 2-D model of the HDD actuator arm is considered. A new objective function corresponding to multieigenvalue optimization is suggested to improve the solution of the eigenvalue optimization problem. The material density of the structure is treated as the design variable and the intermediate density is penalized. The effects of different element types and material property functions on the final topology are studied. When the problem is discretized using 8-node element of a uniform density, tole smoothly-varying density field is obtained without checker-board patterns incurred. AS a result of 7he study, an improved design of the HDD actuator arm is suggested. Dynamic characteristics of the suggested design are compared computationally with those of the old design. With the same amount of the moment of inertia, the natural frequency of the first lateral mode of the suggested design is subsequently increased over the existing one.

  • PDF

ARM Multimedia data retrieval in low power mobile disk drive (저전력 모바일 드라이브에서의 멀티미디어 데이터 재생)

  • Park, Jung-Wan;Won, You-Jip
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2002.04a
    • /
    • pp.676-678
    • /
    • 2002
  • In this work, we present the novel scheduling algorithm of the multimedia data retrieval for the mobile disk drive. Our algorithm is focused on minimizing the power consumption involved in data retrieval from the local disk drive. The prime commodity in mobile devices is the electricity. Strict restriction on power consumption requirement of the mobile device put unique demand in designing of its hardware and software components. State of the art disk based storage subsystem becomes small enough to be embedded in handhold devices. It delivers abundant storage capacity and portability. However, it is never be trivial to integrate small hard disk or optical disk drive in handhold devices due to its excessive power consumption. Our algorithm ARM in this article generates the optimal schedule of retrieving data blocks from the mobile disk drive while guaranteeing continuous playback of multimedia data.

  • PDF

Topology Optimization of a HDD Actuator Arm (HDD 구동기 팔의 위상 최적화)

  • Chang, Su-Young;Youn, Sung-Kie;Kim, Cheol-Soon;Oh, Dong-Ho
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.7 s.178
    • /
    • pp.1801-1809
    • /
    • 2000
  • A study on the topology optimization of Hard-Disk-Driver(HDD) actuator arm in free vibration is presented. The purpose of this research is to increasse the natural frequency of the first lateral mode of the HDD actuator arm under the constraint of total moment of inertia, so as to facilitate the position control of high speed actuator am. The first lateral mode is an important factor in the position control process. Thus the topology optimization for 2-D model of the HDD actuator arm is considered. A new objective function corresponding to multieigenvalue optimization is suggested to improve the solution of the eigenvalue optimization problem. The material density of the structure is treated as the design variable and the intermediate density is penalized. The effects of different element types and material property functions on the final topology are studied. When the problem is discretized using 8-node element of a uniform density, the smoothly-varying density field is obtained without checker-board patterns incurred. As a result of the study an improved design of the HDD actuator arm is suggested. Dynamic characteristics of the suggested design are compared computationally with those of the old design. With the same amount of the moment of inertia, the natural frequency of the first lateral mode or the suggested design is subsequently increased over the existing one.

Shape Sensitivity Analysis for the Optimal Design of Air Bearing Sliders of Optical Disk Drives (광디스크 드라이브 공기베어링 슬라이더의 최적설계를 위한 형상민감도 해석)

  • Kim, Hyun-Ki;Jang, Hyuk;Kim, Kwang-Sun;Lim, Kyong-Hwa;Jeong, Tae-Gun
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2000.11a
    • /
    • pp.742-747
    • /
    • 2000
  • The optical storage device has recently experienced significant improvements, especially for the aspects of high capacity and fast transfer rate. However, it is the fact that the optical storage device has the lower access time for the randomly scattered data compared to the hard disk drives. It is, therefore, necessary to develop a new type of optical storage system. In this study, we investigate the air bearing characteristics for the optical disk drives which have the swing arm actuator similarly to the hard disk drives. Considering the requirements of the optical disk drives, we parametrize the shape of the air bearing surface and investigate its sensitivity to the flying characteristics for further optimized design outputs.

  • PDF

Analysis of Shock Mechanism and Actuator Behavior of HDD (내충격성 향상을 위한 HDD Actuator의 거동 연구)

  • 손진승;좌성훈;이행수;홍민표
    • Journal of KSNVE
    • /
    • v.11 no.3
    • /
    • pp.449-454
    • /
    • 2001
  • The shock performance of hard disk drives has been a serious issue for portable computers and AV application HDD. Focusing on the motion of an actuator, we investigated non-operational shock mechanism and studied several parameters that affect the shock performance by experimental analysis. It was found that there are two important factors fort the actuator to endure high shock revel. One is a shock transmissibility and the other is a beating between the arm blade and the suspension. To generalize the shock transmissibility, the concept of shock response spectrum was introduced. The shock response spectrum of the actuator system was obtained experimentally and compared with that of an analytical single degree of freedom model. It was found that there was a good agreement. The first bending natural frequency of the arm blade was found to be the most important factor for the low shock transmissibility. By applying the shock response spectrum and avoiding the beating, we could design an actuator of high shock performance.

  • PDF

Effects of Gap Spacing on Heat Transfer Characteristics for Co-Rotating Disks (동시 회전원판 사이의 간격변화에 따른 열전달 특성)

  • Ryu, Goo-Young;Won, Chung-Ho;Cho, Hyung-Hee
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.24 no.4
    • /
    • pp.570-577
    • /
    • 2000
  • Local heat transfer characteristics inside a hard disk driver(HDD) are investigated in this study. The investigation is considered between disks co-rotating in a cylindrical enclosure. The gap spacing, rotating speed and head-arm positions are mainly considered to understand the flow and heat transfer in the co-rotating disks. The naphthalene sublimation technique is used to determine local heat/mass transfer coefficients on the rotating disk. Flow patterns inside the co-rotating disks are investigated using a Laser Doppler Anemometer (LDA) and also analyzed numerically. The results show that the heat transfer coefficients on the disk changed little with the gap spacing between disks. Heat transfer rates in the outer region increases with increasing rotating Renolds number, but the values normalized by that on a free rotating disk give a similar pattern for the tested cases. The head-arm inserted between the rotating disks destroys the inner region resulting in enhancement of heat transfer in that region.

Shape Sensitivity Analysis of Air Bearing Sliders of Optical Disk Drives (광디스크 드라이브 공기베어링 슬라이더의 형상민감도 해석)

  • Kim, Hyun-Ki;Jang, Hyuk;Kim, Kwang-Sun;Lim, Kyong-Hwa
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.7 no.4
    • /
    • pp.37-42
    • /
    • 2000
  • The optical storage device has recently experienced significant improvements, especially for the aspects of high capacity and fast transfer rate. However, it is the fact that the optical storage device has the lower access time for the randomly scattered data compared to the hard disk drives. It is, therefore, necessary to develop a new type of optical storage system. In this study, we investigate the air bearing characteristics for the optical disk drives which have the swing arm actuator similar to the hard disk drives. Considering the requirements of the optical disk drives, we parameterize the shape of the air bearing surface and investigate its sensitivity to the flying characteristics for further optimized design outputs.

  • PDF

Shock Vibration Control of Hard-Disk Drive Using Coupled Shock Spectrum Analysis in Time-Frequency Domain (시간-주파수 영역에서의 연성 충격 스펙트럼 분석을 통한 하드디스크 드라이브의 충격진동 제어 (현장개발사례: SAMSUNG HDD 'SPINPOINT V40/P40 SERIES'))

  • Han, Yun-Sik;Kang, Seong-Woo;Oh, Dong-Ho;Hwang, Tae-Yeon;Son, Young
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.05a
    • /
    • pp.1111-1116
    • /
    • 2001
  • A transient T-F(time-frequency) signal processing technique is applied to a tilt drop and a linear shock test rigs for identification of shock characteristics of hard disk drive (HDD). The T-F technique essentially tracks the shock characteristics of pivot point response as well as head slap and lift-off phenomena. From the T-F analysis result, the shock characteristic in HDD is modeled by the two degree of freedom coupled-dynamic system, which consists of actuator arm and suspension. As shock designing tool, the maximax shock response spectrum is employed for prediction of shock performance. Finally, the shock control technique is tested with newly designed actuator arm and suspension. Experimental head slap test result shows that the shock performance is much higher with the new shockproof designed model than the current model

  • PDF