• Title/Summary/Keyword: Haptic device

Search Result 228, Processing Time 0.058 seconds

Real-Time Haptic Rendering of Slowly Deformable Bodies Based on Two Dimensional Visual Information for Telemanipulation (원격조작을 위한 2차원 영상정보에 기반한 저속 변형체의 실시간 햅틱 렌더링)

  • Kim, Jung-Sik;Kim, Young-Jin;Kim, Jung
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.31 no.8
    • /
    • pp.855-861
    • /
    • 2007
  • Haptic rendering is a process providing force feedback during interactions between a user and a virtual object. This paper presents a real-time haptic rendering technique for deformable objects based on visual information of intervention between a tool and a real object in a remote place. A user can feel the artificial reaction force through a haptic device in real-time when a slave system exerts manipulation tasks on a deformable object. The models of the deformable object and the manipulator are created from the captured image obtained with a CCD camera and the recognition of objects is achieved using image processing techniques. The force at a rate of 1 kHz for stable haptic interaction is deduced using extrapolation of forces at a low update rate. The rendering algorithm developed was tested and validated on a test platform consisting of a one-dimensional indentation device and an off-the shelf force feedback device. This software system can be used in a cellular manipulation system providing artificial force feedback to enhance a success rate of operations.

Toward Transparent Virtual Coupling for Haptic Interaction during Contact Tasks (컨택트 작업 시 햅틱 인터렉션의 투명성 향상을 위한 Virtual Coupling 기법의 설계)

  • Kim, Myungsin;Lee, Dongjun
    • The Journal of Korea Robotics Society
    • /
    • v.8 no.3
    • /
    • pp.186-196
    • /
    • 2013
  • Since its introduction (e.g., [4, 6]), virtual coupling technique has been de facto way to connect a haptic device with a virtual proxy for haptic rendering and control. However, because of the single dependence on spring-damper feedback action, this virtual coupling suffers from the degraded transparency particularly during contact tasks when large device/proxy-forces are involved. In this paper, we propose a novel virtual coupling technique, which, by utilizing passive decomposition, reduces device-proxy position deviation even during the contact tasks while also scaling down (or up) the apparent inertia of the coordinated device-proxy. By doing so, we can significantly improve transparency between multiple degree of freedom (possibly nonlinear) haptic device and virtual proxy. In other to use passive decomposition, disturbance observer of [3] is adopted to estimate human force with some dead-zone modification to avoid "winding-up" force estimation in the presence of device torque saturation. Some preliminary experimental results are also given to illustrate efficacy of the proposed technique.

POMY: POSTECH Immersive English Study with Haptic Feedback (POMY: 햅틱 피드백을 적용한 몰입형 영어 학습 시스템)

  • Lee, Jaebong;Lee, Kyusong;Phuong, Hoang Minh;Lee, Hojin;Lee, Gary Geunbae;Choi, Seungmoon
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.20 no.8
    • /
    • pp.815-821
    • /
    • 2014
  • In this paper, we propose a novel CALL (Computer-Assisted Language Learning) system, which is called POMY (POSTECH Immersive English Study). In our system, students can study English while talking to characters in a computer-generated virtual environment. POMY also supports haptic feedback, so students can study English in a more interesting manner. Haptic feedback is provided by two platforms, a haptic chair and a force-feedback device. The haptic chair, which is equipped with an array of vibrotactile actuators, delivers directional information to the student. The force-feedback device enables the student to feel the physical properties of an object. These haptic systems help the student better understand English conversations and focus on studying. We conducted a user experiment and its results showed that our haptic-enabled English study contributes to better learning of English.

Development of an Active Gait Assistive Device with Haptic Information (햅틱 연동 능동 보행보조장치 개발)

  • Pyo, Sang-Hun;Oh, Min-Kyun;Yoon, Jung-Won
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.21 no.6
    • /
    • pp.553-559
    • /
    • 2015
  • The purpose of this research is to develop a gait assistive device to enhance the gait stability and training efficiency of stroke patients. The configuration of this device is mainly composed of a motored wheel and a single cane whose lower end is attached to a motored wheel frame. A patient can feel haptic information from continuous ground contact from the wheel while walking through the grip handle. In addition, the wheeled cane can avoid using excessive use of the patient's upper limb for weight support and motivate the patient to use a paralyzed lower limb more actively. Moreover, the proposed device can provide intuitive and safe user interaction by integrating a force sensor and a tilt sensor equipped to the cane frame, and a switch sensor at the cane's handle. The admittance control has been implemented for the patient to change the walking speed intuitively by using the interaction forces at the handle. A hemi-paretic stroke patient participated in the walking assistive experiments as a pilot study to verify the effectiveness of the proposed haptic cane system. The results showed that the patient could improve walking speed and muscle activations during walking with a constant speed mode of the haptic cane. Moreover, the patient could maintain the preferred walking speeds and gait stability regardless of the magnitude of resistance forces with the admittance control mode of the haptic cane. The proposed robotic gait assistive device with a simple and intuitive mechanism can provide efficient gait training modes to stroke patients with high possibilities of widespread utilizations.

A study on control of the Haptic Device use for Robot Arm (다관절 다단의 햅틱장치 제어에 관한 연구)

  • Park, In-man;Kim, Deog-Soo;Park, Jeong-Man
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.18 no.1
    • /
    • pp.61-66
    • /
    • 2015
  • Force feedback control is investigated for improving the quality of the haptic feedback in virtual reality applications. We proposed method for control of the haptic device using universal serial bus. and evaluated the characteristics with experimental set.

Haptic Technology for the Mobile Device: Future Research and Opportunity in Business

  • Park, Joo-Won;Jo, Soo-Ran;Jeon, Se-Bom;Moon, Jung-Hoon
    • 한국경영정보학회:학술대회논문집
    • /
    • 2008.06a
    • /
    • pp.79-84
    • /
    • 2008
  • Haptics, the science and physiology of the sense of touch, has been investigated in the field of engineering and HCI to provide better computing environments for users. Previous haptic technology being focused was mainly on the PC environments; however, beginning with the i-Phone of Apple recent haptic technology has entered our daily lives. Despite its popularization, the business opportunities the technology will bring have not yet been investigated thoroughly. This research forecasts the application of haptic technology on mobile devices and the consequential business opportunity. Also, the direction of future research in the field of MIS will be proposed.

  • PDF

모바일 기기용 햅틱스를 위한 센서 및 구동기

  • Kim, Sang-Youn
    • 한국HCI학회:학술대회논문집
    • /
    • 2009.02a
    • /
    • pp.1683-1687
    • /
    • 2009
  • This paper addresses a haptic actuator which can be applied to mobile devices. For haptic feedback in mobile devices, we have to consider not only stimulating force and frequency but also the size and the power consumption of a haptic module. Thus far, vibration motors have been widely used in mobile devices to provide tactile sensation. The reason is that a vibration motor is small enough to be inserted into a mobile device. This paper addresses vibrotactile actuators and other haptic actuators which can generate a wide variety of tactile sensations.

  • PDF

Effects of the time delay on the stability of a virtual wall model with a first-order-hold method (시간지연에 의한 일차홀드 방식을 포함하는 가상벽 모델의 안정성 영향 분석)

  • Lee, Kyungno
    • Journal of Institute of Convergence Technology
    • /
    • v.4 no.2
    • /
    • pp.17-21
    • /
    • 2014
  • This paper presents the effects of the time delay on the stability of the haptic system that includes a virtual wall and a first-order-hold method. The model of a haptic system includes a haptic device model with a mass and a damper, a virtual wall model, a first-order-hold model and a time delay model. In this paper, the time delay is considered as the computational time delay that is assumed to be as much as the sampling time. As the time delay increases, the maximal available stiffness of a virtual wall model is reduced reversely. The relation among the time delay and the maximum available stiffness, the mass and the damper of the haptic device are analyzed using the MATLAB simulation.

Haptic display for deformable thin film (가변형 박판에 대한 촉감 제시)

  • 이승룡;최혁렬
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.125-129
    • /
    • 1996
  • This paper presents the haptic rendering algorithm which gives the feel information to the operator by manipulating a virtual tool with a haptic device in the simulated environment. The movement of a virtual tool grasped by the operator, which is modeled as a square is displayed in the graphic screen of a computer and the virtual environment is modeled as deformable thin film. When the tool contacts with the virtual environment, the operator is forced to feel the contact and the feature of the deformed virtual environment through the torque control of th haptic device. Contact situations are modeled as close as to the reality considering friction, elasticity and multiple contacts. Several experiments are conducted and the effectiveness of the proposed algorithm is confirmed.

  • PDF