• 제목/요약/키워드: Haptic Virtual Environment

검색결과 125건 처리시간 0.035초

ER 유체를 이용한 햅틱 마스터와 가상 MIS 환경의 연동제어 (Force-Feedback Control of an Electrorheological Haptic Device in MIS Virtual Environment)

  • 강필순;한영민;최승복
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2006년도 추계학술대회논문집
    • /
    • pp.422-427
    • /
    • 2006
  • This paper presents force-feedback control performance of a haptic device in virtual environment of minimally invasive surgery(MIS). As a first step, based on an electrorheological(ER) fluid and spherical geometry, a new type of master device is developed and integrated with a virtual environment of MIS such as a surgical tool and human organ. The virtual object is then mathematically formulated by adopting the shape retaining chain linked(S-Chain) model. After evaluating reflection force, computational time, and compatibility with real time control, the virtual environment of MIS is formulated by interactivity with the ER haptic device in real space. Tracking control performances for virtual force trajectory are presented in time domain, and theirtrackingerrorsareevaluated.

  • PDF

전기유변 유체를 이용한 햅틱 마스터와 가상의 최소침습수술 환경과의 연동제어 (Force-feedback Control of an Electrorheological Haptic Device in MIS Virtual Environment)

  • 강필순;한영민;최승복
    • 한국소음진동공학회논문집
    • /
    • 제16권12호
    • /
    • pp.1286-1293
    • /
    • 2006
  • This paper presents force-feedback control performance of a haptic device in virtual environment of minimally invasive surgery(MIS). As a first step, based on an electrorheological (ER) fluid and spherical geometry, a new type of master device is developed and integrated with a virtual environment of MIS such as a surgical tool and human organ. The virtual object is then mathematically formulated by adopting the shape retaining chain linked(S-chain) model. After evaluating reflection force, computational time, and compatibility with real time control, the virtual environment of MIS is formulated by interactivity with the ER haptic device in real space. Tracking control performances for virtual force trajectory are presented in time domain.

보이스 코일형 모터를 이용한 햅틱 장치의 설계 및 제어 (Design and Control of Haptic Device using Voice Coil Type Motor)

  • 성하경;범진환
    • 대한전기학회논문지:시스템및제어부문D
    • /
    • 제51권10호
    • /
    • pp.439-445
    • /
    • 2002
  • In this paper force feedback control system is investigated for improving the quality of the haptic feedback in virtual reality applications. We suggested the method of controlling the haptic device and modelling the virtual environment. Haptic device is composed of five bar link structure, voice coil motor, control board, and virtual environment modeling program. We applied voice coil motor in the actuating system for simple structure and easy control. Virtual environment modelling is constructed in PC, and the control signals of the actuators and the encoder data are transferred to the control system through USB. Experiment is performed to evaluate the characteristics of the haptic device.

가변형 박판에 대한 촉감 제시 (Haptic display for deformable thin film)

  • 이승룡;최혁렬
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1996년도 한국자동제어학술회의논문집(국내학술편); 포항공과대학교, 포항; 24-26 Oct. 1996
    • /
    • pp.125-129
    • /
    • 1996
  • This paper presents the haptic rendering algorithm which gives the feel information to the operator by manipulating a virtual tool with a haptic device in the simulated environment. The movement of a virtual tool grasped by the operator, which is modeled as a square is displayed in the graphic screen of a computer and the virtual environment is modeled as deformable thin film. When the tool contacts with the virtual environment, the operator is forced to feel the contact and the feature of the deformed virtual environment through the torque control of th haptic device. Contact situations are modeled as close as to the reality considering friction, elasticity and multiple contacts. Several experiments are conducted and the effectiveness of the proposed algorithm is confirmed.

  • PDF

Force Display Based on Simultaneous Actuation of Motors and Brakes

  • Kwon, Tae-Bae;Song, Jae-Bok
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2004년도 ICCAS
    • /
    • pp.1131-1135
    • /
    • 2004
  • In the virtual environment, force feedback to the human operator makes virtual experiences more realistic. However, the force feedback using active actuators such as motors can make the system active and sometimes unstable. To ensure the safe operation and enhance the haptic feeling, stability should be guaranteed. Both motors and brakes are commonly used for haptic device. A brake can generate a torque only against its rotation, but it is intrinsically stable. Consequently, motors and brakes are complementing each other. In this research, a two degree-of-freedom (DOF) haptic device equipped with both motors and brakes has been developed to provide better haptic effects. Each DOF is actuated by a pair of motor and brake. Modeling of the environment and the control method are needed to utilize both actuators. For various haptic effects, contact with the virtual wall and representation of friction effect are extensively investigated in this paper. It is shown that the hybrid haptic system is more suited to some applications than the motor-based active haptic system.

  • PDF

Z-Clutching: Interaction Technique for Navigating 3D Virtual Environment Using a Generic Haptic Device

  • Song, Deok-Jae;Kim, Seokyeol;Park, Jinah
    • Journal of Computing Science and Engineering
    • /
    • 제10권1호
    • /
    • pp.32-38
    • /
    • 2016
  • Navigating a large 3D virtual environment using a generic haptic device can be challenging since the haptic device is usually bounded by its own physical workspace. On the other hand, mouse interaction easily handles the situation with a clutching mechanism-simply lifting the mouse and repositioning its location in the physical space. Since the haptic device is used for both input and output at the same time, in many cases, its freedom needs to be limited in order to accommodate such a situation. In this paper, we propose a new mechanism called Z-Clutching for 3D navigation of a virtual environment by using only the haptic device without any interruption or sacrifice in the given degrees of freedom of the device's handle. We define the clutching state which is set by pulling the haptic handle back into space. It acts similarly to lifting the mouse off the desk. In this way, the user naturally feels the haptic feedback based on the depth (z-direction), while manipulating the haptic device and moving the view as desired. We conducted a user study to evaluate the proposed interaction technique, and the results are promising in terms of the usefulness of the proposed mechanism.

충돌감지 알고리듬을 적용한 햅틱 핸드 컨트롤러의 제어 (Control of Haptic Hand Controller Using Collision Detection Algorithm)

  • 손원선;조경래;송재복
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2003년도 춘계학술대회 논문집
    • /
    • pp.992-995
    • /
    • 2003
  • A haptic device operated by the user's hand can receive information on position and orientation of the hand and display force and moment generated in the virtual environment to the hand. For realistic haptic display, the detailed information on collision between objects is necessary. In the past, the point-based graphic environment has been used in which the end effector of a haptic device was represented as a point and the interaction of this point with the virtual environment was investigated. In this paper, the shape-based graphic environment is proposed in which the interaction of the shape with the environment is considered to analyze collision or contact more accurately. To this end. the so-called Gilbert-Johnson-Keerthi (GJK) algorithm is adopted to compute collision points and collision instants between two shapes in the 3-D space. The 5- DOF haptic hand controller is used with the GJK algorithm to demonstrate a peg-in-hole operation in the virtual environment in conjunction with a haptic device. It is shown from various experiments that the shape-based representation with the GJK algorithm can provide more realistic haptic display for peg-in-hole operations.

  • PDF

Tangible Cooperation in Shared Virtual Environment

  • Irawati, Sylvia;Kim, Jong-Phil;Kim, Jin-Wook;Ko, Hee-Dong
    • 한국HCI학회:학술대회논문집
    • /
    • 한국HCI학회 2009년도 학술대회
    • /
    • pp.214-220
    • /
    • 2009
  • Recent advanced technologies enable multiple users to share the virtual environment and work together as they are collocated. Additional sensory information such as haptic could improve the cooperation. In this paper, we propose a server-client architecture with multi-rate haptic control to support a tangible cooperation. Using our approach, the system is able to maintain a consistent simulation state across multiple users as well as to provide a highfidelity stable haptic interaction. To verify our approach, we have developed an experimental application and tested the cooperation among multiple users. The results confirm that our system is able to provide coherency among clients as well as haptic transparency.

  • PDF

분산 촉각 가상 환경에서 촉각 데이터의 전송 효율에 관한 실험 (An Experimental Study on the Transmission Efficiency of Haptic Data in Distributed Haptic Virtual Environment)

  • 김동훈;성미영;전경구;박남일;이상락;박종승
    • 한국HCI학회:학술대회논문집
    • /
    • 한국HCI학회 2006년도 학술대회 1부
    • /
    • pp.251-256
    • /
    • 2006
  • 본 논문에서는 분산 촉각 가상 환경(DHVE; Distributed Haptic Virtual Environments)에서 촉각(haptic) 데이터가 어느 정도의 네트워크 트래픽을 가지며 또 효율적으로 통신 하는지에 대하여 실험하고 그 결과를 기술한다. 본 연구에서 제시하는 실험 데이터는 차세대 인터페이스로 떠오르는 촉각 장치의 높은 전송량과 실시간성을 요구하는 데이터가 분산 환경에서 서비스될 때 어떤 문제점을 가지는지에 대한 실질적이고 의미 있는 자료로 활용될 수 있을 것이다. 본 논문을 통해 우리는 기존의 분산 가상 환경들의 주요 논쟁점인 확장성(scalability), 안정성(safety) 등이 촉각 가상 환경에서는 어떻게 달라지는지 예측하고, 분산 가상 환경에서의 촉각 장치 활용의 유용성, 효율적인 네트워크 사용 방법, 촉각 기반 가상 환경이 구동될 수 있는 최저의 조건에 대해 고찰해 볼 수 있다. 본 논문은 차세대 인터페이스인 촉각 장치를 기존의 시스템에 안정적으로 추가하는 작업에 도움을 주며, 미래의 실감형 네트워크 가상 현실(Immersive Network Virtual Environment) 연구에 기초자료로 활용할 수 있을 것이다.

  • PDF

가변적인 통신지연시간을 갖는 원격 작업 환경을 위한 실시간 햅틱 렌더링 (Real-Time Haptic Rendering for Tele-operation with Varying Communication Time Delay)

  • 이경노;정성엽
    • 동력기계공학회지
    • /
    • 제13권2호
    • /
    • pp.71-82
    • /
    • 2009
  • This paper presents a real-time haptic rendering method for a realistic force feedback in a remote environment with varying communication time-delay. The remote environment is assumed as a virtual environment based on a computer graphics, for example, on-line shopping mall, internet game and cyber-education. The properties of a virtual object such as stiffness and viscosity are assumed to be unknown because they are changed according to the contact position and/or a penetrated depth into the object. The DARMAX model based output estimator is proposed to trace the correct impedance of the virtual object in real-time. The output estimator is developed on the input-output relationship. It can trace the varying impedance in real-time by virtue of P-matrix resetting algorithm. And the estimator can trace the correct impedance by using a white noise that prevents the biased input-output information. Realistic output forces are generated in real-time, by using the inputs and the estimated impedance, even though the communication time delay and the impedance of the virtual object are unknown and changed. The generated forces trace the analytical forces computed from the virtual model of the remote environment. Performance is demonstrated by experiments with a 1-dof haptic device and a spring-damper-based virtual model.

  • PDF