• Title/Summary/Keyword: Haptic Information

Search Result 175, Processing Time 0.022 seconds

A Haptic Interface Using a Force-Feedback Joystick (힘 반향 조이스틱을 이용한 햅틱 인터페이스)

  • Ko, Ae-Kyoung;Kim, Hong-Chul;Lee, Jang-Myung;Choi, Joon-Young
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.13 no.12
    • /
    • pp.1207-1212
    • /
    • 2007
  • We propose a haptic interface algorithm for joystick operators working in remote control systems of unmanned vehicles. The haptic interface algorithm is implemented using a force-feedback joystick, which is equipped with low price DC motors without encoders. Generating specific amounts of forces on the joystick pole according to the distance between a remote controlled vehicle and obstacles, the haptic interface enables the operator to perceive the distance information by the sense of touch. For the case of no joystick operation or no obstacles in the working area, we propose an origin control algorithm, which positions the joystick pole at the origin. The origin control algorithm prevents the false movement of the remote vehicles and provides the operator with a realistic force resisting the joystick pole's movement. The experiment results obtained under various scenarios exemplify the validity of the proposed haptic interface algorithm and the origin control algorithm.

Real-Time Haptic Rendering of Slowly Deformable Bodies Based on Two Dimensional Visual Information for Telemanipulation (원격조작을 위한 2차원 영상정보에 기반한 저속 변형체의 실시간 햅틱 렌더링)

  • Kim, Jung-Sik;Kim, Young-Jin;Kim, Jung
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.31 no.8
    • /
    • pp.855-861
    • /
    • 2007
  • Haptic rendering is a process providing force feedback during interactions between a user and a virtual object. This paper presents a real-time haptic rendering technique for deformable objects based on visual information of intervention between a tool and a real object in a remote place. A user can feel the artificial reaction force through a haptic device in real-time when a slave system exerts manipulation tasks on a deformable object. The models of the deformable object and the manipulator are created from the captured image obtained with a CCD camera and the recognition of objects is achieved using image processing techniques. The force at a rate of 1 kHz for stable haptic interaction is deduced using extrapolation of forces at a low update rate. The rendering algorithm developed was tested and validated on a test platform consisting of a one-dimensional indentation device and an off-the shelf force feedback device. This software system can be used in a cellular manipulation system providing artificial force feedback to enhance a success rate of operations.

Improvement of surgical haptic master device using cable-conduit and backlash compensation by smooth backlash inverse (케이블 컨듀잇 구조의 수술용 햅틱 마스터 장치의 개선과 smooth backlash inverse를 이용한 backlash 보정)

  • Choi, Woo Hyeok;Yoon, Sung Min;Lee, Min Cheol
    • The Journal of Korea Robotics Society
    • /
    • v.9 no.1
    • /
    • pp.48-56
    • /
    • 2014
  • In robotic surgery, a surgeon checks only a surgical site of patient in the progress of surgery by vision and sound information. In order to solve this limited information, the haptic function is necessary. And haptic surgical robot is also necessary to design a haptic master device. The master device for laparoscope operation with cable-conduit was developed in previous research to give haptic function. It suggested a possibility of developing a master device by using the cable-conduit. However, it is very inconvenient to use. Therefore, this paper suggests a new mechanism design structure to solve the problems of the previous work by new forming a new master device. And it has proved that it's usability is better than previous one. Furthermore it has also experimented and analyzed that a backlash of new master device is compensated by smooth backlash inverse algorithm.

POMY: POSTECH Immersive English Study with Haptic Feedback (POMY: 햅틱 피드백을 적용한 몰입형 영어 학습 시스템)

  • Lee, Jaebong;Lee, Kyusong;Phuong, Hoang Minh;Lee, Hojin;Lee, Gary Geunbae;Choi, Seungmoon
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.20 no.8
    • /
    • pp.815-821
    • /
    • 2014
  • In this paper, we propose a novel CALL (Computer-Assisted Language Learning) system, which is called POMY (POSTECH Immersive English Study). In our system, students can study English while talking to characters in a computer-generated virtual environment. POMY also supports haptic feedback, so students can study English in a more interesting manner. Haptic feedback is provided by two platforms, a haptic chair and a force-feedback device. The haptic chair, which is equipped with an array of vibrotactile actuators, delivers directional information to the student. The force-feedback device enables the student to feel the physical properties of an object. These haptic systems help the student better understand English conversations and focus on studying. We conducted a user experiment and its results showed that our haptic-enabled English study contributes to better learning of English.

Obstacle Information Transfer and Control Method using Haptic Device consist of Vibration Motors (진동모터로 구성된 햅틱 디바이스를 이용한 장애물 정보 전달 및 제어 방법)

  • Lee, Dong-Hyuk;Noh, Kyung-Wook;Kang, Sun Kyun;Han, Jong Ho;Lee, Jang-Myung
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.20 no.10
    • /
    • pp.1036-1043
    • /
    • 2014
  • In this paper, a new haptic device is proposed for the teleoperation, which can recognize the invisible environment of a mobile robot. With this new device, it is possible for the user to identify the location of an obstacle and to avoid it. The haptic device has been attached on the top of a joystick so that the user can remotely control the mobile robot to avoid the obstacles which are recognized by the ultrasonic sensors. Also, the invisible environment is recognized more accurately overlapping the data from the ultrasonic sensors. There are five vibration motors in the haptic device to indicate the direction of the obstacle. So the direction of the obstacle can be recognized by the vibration at the finger on each vibration motor. For various situations and surrounding environments, experiments are performed using fuzzy controller and overlapping ultrasonic sensors. The results demonstrate the effectiveness of the proposed haptic joystick.

Haptic Media Broadcasting (촉각방송)

  • Cha, Jong-Eun;Kim, Yeong-Mi;Seo, Yong-Won;Ryu, Je-Ha
    • Broadcasting and Media Magazine
    • /
    • v.11 no.4
    • /
    • pp.118-131
    • /
    • 2006
  • With rapid development in ultra fast communication and digital multimedia, the realistic broadcasting technology, that can stimulate five human senses beyond the conventional audio-visual service is emerging as a new generation broadcasting technology. In this paper, we introduce a haptic broadcasting system and related core system and component techniques by which we can 'touch and feel' objects in an audio-visual scene. The system is composed of haptic media acquisition and creation, contents authoring, in the haptic broadcasting, the haptic media can be 3-D geometry, dynamic properties, haptic surface properties, movement, tactile information to enable active touch and manipulation and passive movement following and tactile effects. In the proposed system, active haptic exploration and manipulation of a 3-D mesh, active haptic exploration of depth video, passive kinesthetic interaction, and passive tactile interaction can be provided as potential haptic interaction scenarios and a home shopping, a movie with tactile effects, and conducting education scenarios are produced to show the feasibility of the proposed system.

Visual and Verbal Presentations of Haptic Information in Online Fashion Stores and Consumers' Imagery Information Processing

  • Tae-Youn Kim;Yoon-Jung Lee
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.48 no.1
    • /
    • pp.172-191
    • /
    • 2024
  • This study investigated how the visual and verbal presentation format of haptic information on apparel products in online stores affects consumers' imagery information processing. This includes the quantity and vividness of mental imagery, the ease of evoking mental imagery, and the evocation of imagination imagery. Additionally, the study explored consumer satisfaction with the information and online store. The study also tested a conceptual model to examine the effects of three imagery types on imagination imagery (as elaborated imagery) and how this imagination imagery affects consumer satisfaction. Employing a 2 × 3 × 2 between-subjects factorial design, twelve one-page websites were created for the experiment. 528 women in their 20s and 30s were randomly assigned to one of the 12 treatment conditions and answered the questionnaire. The results demonstrated significant differences in the three types of mental imagery, consumers' evocation of imagination imagery, and their satisfaction with information and online stores based on presentation format. The SEM analysis revealed that the quantity and vividness of mental imagery influenced the evocation of imagination imagery, affecting consumers' satisfaction with the information. These findings suggest that online retailers must provide close-up pictures or descriptive text of apparel products to elicit positive consumer responses.

Haptization of Multidimensional Information (다중 정보의 햅틱화)

  • Yim, Sung-Hoon;Choi, Seung-Moon
    • 한국HCI학회:학술대회논문집
    • /
    • 2009.02a
    • /
    • pp.2086-2088
    • /
    • 2009
  • Haptization is delivering the properties of a data set to the user through the haptic sensory channels. When multidimensional information is imparted to the user, unexpected interactions between haptic attributes can cause the perceived information by the user to be distorted from what is contained in the original data set. Such possibility must be carefully considered in designing haptization methods. Previously, we developed a haptic rendering algorithm for the simultaneous presentation of object shape and stiffness for data haptization. In this research, we extend the algorithm to be applicable to several common data structures. We then shift our attention to the haptization of other haptic attributes including friction and damping.

  • PDF

Haptic Rendering Algorithm for Collision Situation of Two Objects (두 객체가 충돌하는 상황에서의 햅틱 렌더링 알고리즘)

  • Kim, Seonkyu;Kim, Hyebin;Ryu, Chul
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.18 no.3
    • /
    • pp.35-41
    • /
    • 2018
  • In this paper, we define a haptic rendering algorithm for a situation that has collision between static object and single object. We classified video scenes into four categories which can be easily seen in video sequence. The proposed algorithm can detect which frame is suitable for haptic rendering by detecting the change of direction using motion estimation and change of shape using object tracking. As a result, a total of 13 frames are extracted from the sample video and playing time of these frames were calculated. We confirmed that the haptic effect appears in expected playing time by adding the appropriate haptic generating waveform thtough the haptic editing program.

A Robust Adaptive Impedance Control Algorithm for Haptic Interfaces (강인적응 알고리즘을 통한 Haptic Interlace의 임피던스 제어)

  • Park, Heon;Lee, Sang-Chul;Lee, Su-Sung;Lee, Jang-Myung
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.8 no.5
    • /
    • pp.393-400
    • /
    • 2002
  • Teleoperation enables an operator to manipulate remote objects. One of the main goals in teleoperation researches is to provide the operator with the fueling of the telepresence, being present at the remote site. For these purposes, a master robot must be designed as a bilateral control system that can transmit position/force information to a slave robot and feedback the interaction force. A newly proposed impedance algorithm is applied for the control of a haptic interface that was developed as a master robot. With the movements of the haptic interface for position/force commands, impedance parameters are always varying. When the impedance parameters between an operator and the haptic interface and the dynamic model are known precisely, many model based control theories and methods can be used to control the device accurately. However, due to the parameters'variations and the uncertainty of the dynamic model, it is difficult to control haptic interfaces precisely. This paper presents a robust adaptive impedance control algorithm for haptic interfaces.