• Title/Summary/Keyword: Haplotype mismatch

Search Result 4, Processing Time 0.03 seconds

Variations in mitochondrial cytochrome b region among Ethiopian indigenous cattle populations assert Bos taurus maternal origin and historical dynamics

  • Tarekegn, Getinet Mekuriaw;Ji, Xiao-yang;Bai, Xue;Liu, Bin;Zhang, Wenguang;Birungi, Josephine;Djikeng, Appolinaire;Tesfaye, Kassahun
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.31 no.9
    • /
    • pp.1393-1400
    • /
    • 2018
  • Objective: This study was carried out to assess the haplotype diversity and population dynamics in cattle populations of Ethiopia. Methods: We sequenced the complete mitochondrial cytochrome b gene of 76 animals from five indigenous and one Holstein Friesian${\times}$Barka cross bred cattle populations. Results: In the sequence analysis, 18 haplotypes were generated from 18 segregating sites and the average haplotype and nucleotide diversities were $0.7540{\pm}0.043$ and $0.0010{\pm}0.000$, respectively. The population differentiation analysis shows a weak population structure (4.55%) among the populations studied. Majority of the variation (95.45%) is observed by within populations. The overall average pair-wise distance ($F_{ST}$) was 0.049539 with the highest ($F_{ST}=0.1245$) and the lowest ($F_{ST}=0.011$) $F_{ST}$ distances observed between Boran and Abigar, and Sheko and Abigar from the indigenous cattle, respectively. The phylogenetic network analysis revealed that all the haplotypes detected clustered together with the Bos taurus cattle and converged to a haplogroup. No haplotype in Ethiopian cattle was observed clustered with the reference Bos indicus group. The mismatch distribution analysis indicates a single population expansion event among the cattle populations. Conclusion: Overall, high haplotype variability was observed among Ethiopian cattle populations and they share a common ancestor with Bos taurus.

Association between Motilin Receptor Gene Haplotypes and Growth Traits in Japanese Hinai-dori Crossbred Chickens

  • Takahashi, Hideaki;Rikimaru, Kazuhiro;Komatsu, Megumi;Uemoto, Yoshinobu;Suzuki, Keiichi
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.27 no.3
    • /
    • pp.316-323
    • /
    • 2014
  • We previously identified quantitative trait loci (QTL) for body weight and average daily gain in a common region between ADL0198 (chr 1: 171.7 Mb) and ABR0287 (chr 1: 173.4 Mb) on chicken chromosome 1 in an $F_2$ resource population produced by crossing low- and high-growth lines of the Hinai-dori breed. Motilin receptor (MLNR) is a candidate gene affecting growth traits in the region. In this study, we genotyped polymorphisms of the MLNR gene and investigated its association with growth traits in a Hinai-dori $F_2$ intercross population. All the exons of the MLNR gene in the parental population were subjected to PCR amplification, nucleotide sequenced and haplotypes identified. To distinguish resultant diplotype individuals in the $F_2$ population, a mismatch amplification mutation assay was performed. Three haplotypes (Haplotypes 1-3) were accordingly identified. Six genotypes produced by the combination of three haplotypes (Haplotype 1, 2, and 3) were examined in order to identify associations between MLNR haplotypes and growth traits. The data showed that Haplotype 1 was superior to Haplotype 2 and 3 in body weight at 10 and 14 weeks of age, average daily gain between 4 and 10 weeks, 10 and 14 weeks, and 0 and 14 weeks of age in female in $F_2$ females. It was concluded that MLNR is a useful marker of growth traits and could be used to develop strategies for improving growth traits in the Hinai-dori breed.

Chinese Holstein Cattle Shows a Genetic Contribution from Native Asian Cattle Breeds: A Study of Shared Haplotypes and Demographic History

  • Ferreri, Miro;Gao, Jian;Wang, Zhi;Chen, Liben;Su, Jingliang;Han, Bo
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.24 no.8
    • /
    • pp.1048-1052
    • /
    • 2011
  • The Chinese Holstein cattle breed, an introduced breed in China, has been crossbred with native cattle breeds. We hypothesised that the Chinese Holstein local population in Beijing share haplotypes with native Asian cattle breeds, the result of a sudden population expansion in the recent past. We also hypothesised that crossbreeding and population expansion left traces that shaped the genetic makeup of the breed. Evaluation of this was performed by mitochondrial DNA (mtDNA) sequence analysis of Chinese Holstein cattle from Beijing (n = 41) and a comparison of them with the published mtDNA sequences (n = 293) of 14 Asian breeds with an emphasis on Chinese native cattle breeds. Three shared common haplotypes between Chinese Holstein cattle and native Asian cattle were found. Moreover, a high level of haplotype diversity in Chinese Holstein cattle (h = 0.9557) and low nucleotide diversity (${\pi}$ = 0.0052) was found, indicating a past population bottleneck followed by rapid population growth. These findings are supported by the significantly negative deviation of Tajima's D (-1.82085), the star-like pattern of dominant haplotypes and the pairwise mismatch distribution analysis, which showed a unimodal pattern.

Effect of Population Reduction on mtDNA Diversity and Demographic History of Korean Cattle Populations

  • Dadi, Hailu;Lee, Seung-Hwan;Jung, Kyoung-Sup;Choi, Jae-Won;Ko, Moon-Suck;Han, Young-Joon;Kim, Jong-Joo;Kim, Kwan-Suk
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.25 no.9
    • /
    • pp.1223-1228
    • /
    • 2012
  • The population sizes of three Korean indigenous cattle populations have been drastically reduced over the past decades. In this study, we examined the extent to which reduction in populations influenced genetic diversity, population structure and demographic history using complete mitochondrial DNA (mtDNA) control region sequences. The complete mtDNA control region was sequenced in 56 individuals from Korean Black (KB), Jeju Black (JEB) and Korean Brindle (BRI) cattle populations. We included 27 mtDNA sequences of Korean Brown (BRO) from the GenBank database. Haplotype diversity estimate for the total population was high (0.870) while nucleotide diversity was low (0.004). The KB showed considerably low nucleotide (${\pi}$ = 0.001) and haplotype (h = 0.368) diversities. Analysis of molecular variance revealed a low level of genetic differentiation but this was highly significant (p<0.001) among the cattle populations. Of the total genetic diversity, 7.6% was attributable to among cattle populations diversity and the rest (92.4%) to differences within populations. The mismatch distribution analysis and neutrality tests revealed that KB population was in genetic equilibrium or decline. Indeed, unless an appropriate breeding management practice is developed, inbreeding and genetic drift will further impoverish genetic diversity of these cattle populations. Rational breed development and conservation strategy is needed to safeguard these cattle population.