• Title/Summary/Keyword: Hanj

Search Result 2, Processing Time 0.01 seconds

A Study on Tainting Technique for leaking official certificates Malicious App Detection in Android (공인인증서 유출형 안드로이드 악성앱 탐지를 위한 Tainting 기법 활용 연구)

  • Yoon, Hanj Jae;Lee, Man Hee
    • Convergence Security Journal
    • /
    • v.18 no.3
    • /
    • pp.27-35
    • /
    • 2018
  • The certificate is electronic information issued by an accredited certification body to certify an individual or to prevent forgery and alteration between communications. Certified certificates are stored in PCs and smart phones in the form of encrypted files and are used to prove individuals when using Internet banking and smart banking services. Among the rapidly growing Android-based malicious applications are malicious apps that leak personal information, especially certificates that exist in the form of files. This paper proposes a method for judging whether malicious codes leak certificates by using DroidBox, an Android-based dynamic analysis tool.

  • PDF

Improved Block-based Background Modeling Using Adaptive Parameter Estimation (적응적 파라미터 추정을 통한 향상된 블록 기반 배경 모델링)

  • Kim, Hanj-Jun;Lee, Young-Hyun;Song, Tae-Yup;Ku, Bon-Hwa;Ko, Han-Seok
    • Journal of the Korea Society of Computer and Information
    • /
    • v.16 no.4
    • /
    • pp.73-81
    • /
    • 2011
  • In this paper, an improved block-based background modeling technique using adaptive parameter estimation that judiciously adjusts the number of model histograms at each frame sequence is proposed. The conventional block-based background modeling method has a fixed number of background model histograms, resulting to false negatives when the image sequence has either rapid illumination changes or swiftly moving objects, and to false positives with motionless objects. In addition, the number of optimal model histogram that changes each type of input image must have found manually. We demonstrate the proposed method is promising through representative performance evaluations including the background modeling in an elevator environment that may have situations with rapid illumination changes, moving objects, and motionless objects.