• Title/Summary/Keyword: Handwritten character

Search Result 103, Processing Time 0.023 seconds

Result Verification of On-line Handwritten Chinese Character Recognition using Structural Information (구조적 정보를 이용한 온라인 필기 한자 인식 결과 검증)

  • Yoon, Byoung-Hoon;Ha, Jin-Young
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2006.10b
    • /
    • pp.274-277
    • /
    • 2006
  • 본 논문에서는 온라인 필기 한자 인식 과정에 있어 비슷한 한자끼리 혼동되어 오인식되는 한자들을 선별하여 이들 한자 인식과정의 후처리에 적용 할 수 있는 결과검증 방법에 대해서 소개한다. 결과검증 방법은 온라인 필기 한자인식기가 최종 인식결과를 산출하기 전에 후보한자들 중 혼동한자가 있으면 그 혼동 한자에 대해서 미리 정해놓은 조건을 만족하는지 검사하여 점수를 내고 이를 인식 후처리에 이용한다. 인식 후처리에 쓰이는 결과검증 방법에서는 그 한자만이 가지고 있는 구조적인 정보를 다른 한자들과 구별하기 위해 휴리스틱으로 파악하여 조건화 시킨다. 구조적인 정보는 획의 좌표, 방향코드, 순서, 길이 등으로 판단되며 다양한 휴리스틱방법이 고려 될 수 있다. 인식 후처리에 적용되는 결과검증 방법을 통해 혼동되는 온라인 필기 한자를 구별하는데 도움이 되는 것을 실험을 통해 확인하였다.

  • PDF

Performance Evaluation of Chain-code Sequence and Structure-code Sequence for On-line Handwritten Chinese Character Recognition (온라인 필기 한자인식을 위한 체인코드열과 구조코드열의 성능평가)

  • Kim, Hyung-Tai;Ha, Jin-Young
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2006.10b
    • /
    • pp.402-407
    • /
    • 2006
  • 본 논문에서는 보다 실용적인 온라인 한자인식기 개발을 위하여 한자 검정 능력 1급 쓰기 수준을 모두 포함하는 한자 필기 데이터로부터 16방향의 체인코드열과 부분획의 구조를 반영하는 구조코드열을 만들어 성능평가를 하였다. 인식 방법으로는 DP 매칭 방법과 HMM을 사용하여 2,362 종류의 한자에 대해 인식 실험을 하였다. 그 결과 체인코드열을 사용한 DP 매칭 방법에 의한 결과가 96.54%로 가장 높은 인식률을 보였으며, 구조코드열을 사용하여 HMM에 의한 인식실험 결과가 95.65%로 그 뒤를 이었다. 인식 속도면에서는 체인코드 보다 코드열의 길이가 짧은 구조코드열을 사용한 방법이 상대적으로 유리했고, 클래스 당 1개의 모델을 사용한 HMM에 의한 방법이 클래스 당 복수개의 모델을 사용한 DP 매칭 방법에 비해 모델의 개수가 훨씬 적기 때문에 속도 면에서 월등히 유리해 더 효율적인 인식 성능을 보인다는 결론을 내릴 수 있었다.

  • PDF

Character Recognition Method Admitting a Sequence Variation of Handwritten Direction (필기 방향 변이를 수용하는 문자 인식 방법)

  • Lee, Do-Gon;Kim, Woo-Saeng
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2005.05a
    • /
    • pp.843-846
    • /
    • 2005
  • 사용자마다 여러 필기 방식이 존재하기 때문에 입력된 문자가 획 순서를 달리하여 필기했을 경우 오인식 발생확률이 많다고 볼 수 있다. 따라서 본 논문에서는 사용자의 서로 다른 필기 방향을 처리하는 인식 방법을 제안한다. 하나의 문자라도 필기 모양에 따라 해당 모델에서 그 문자가 발생할 확률 값이 다르지만 임계 확률 값 즉, 다양한 필기 모양에 상관없는 최소한의 발생 확률 값을 구할 수 있다. 따라서 시스템이 입력 문자를 인식할 때 어떤 모델에서의 발생 확률이 그 모델에서의 임계 확률 값보다 낮을 경우는 훈련과는 다른 필기체로 쓴 것이라고 가정할 수 있으며, 이러한 정보를 통해서 다른 필기 방향의 문자를 인식할 수가 있다.

  • PDF

Clustering Method based on Structure Code and HMM for Huge Class On-line Handwritten Chinese Character Recognition (대용량 온라인 필기 한자 인식을 위한 구조 코드 및 HMM 기반의 클러스터링 방법)

  • Kim, Kwang-Seob;Ha, Jin-Young
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2008.06c
    • /
    • pp.472-477
    • /
    • 2008
  • 본 논문에서는 은닉 마르코프 모델(HMM)을 기반한 대용량의 필기 한자 인식의 문제점인 시스템 리소스의 한계와 인식에 소요되는 많은 시간을 단축하기 위해 구조코드와 HMM에 최적화 된 클러스터링 알고리즘을 제안한다. 제안하는 클러스터링 알고리즘의 기본 개념은 훈련된 HMM를 대상으로 하고, HMM의 파라미터 수가 동일한 클래스에 대해서 클러스터를 구성하는 것이다. 또한 인식에 소요되는 시간을 줄이기 위해 2단계 클러스터모델 구조를 사용한다. 총 98,639 종류의 일본 한자를 대상으로 한 실험에서 평균 0.92 sec/char 인식 속도와 30순위 후보인식률 96.03%를 보임으로서 대용량 필기 한자 인식을 위한 좋은 방안이 될 것이라 기대한다.

  • PDF

A Study on Enhancement of Handwritten Character Image using Binary Watershed Algorithm (Binary Watershed Algorithm을 이용한 필기체 문자 영상 향상에 관한 연구)

  • 이호준;최영규;이상범
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2001.10b
    • /
    • pp.400-402
    • /
    • 2001
  • 오프라인 필기체 한글 문자인식에서 대부분의 연구들은 영상획득 장비로부터 얻어진 이진영상(Binary image)을 바탕으로 이루어진다. 이 과정 중 영상에 잡음이나 영상패턴의 훼손을 가져오는 경우가 많다. 획이 끊기거나 영상 내 홀(holes)이 발생한 경우 인식에 많은 질적인 문제를 가져온다. 오프라인 필기체 한글 문자인식 과정 중 영상 내 골격을 추출하는 연구는 아직도 많은 난제를 가지고 있다. 또한 골격추출과정은 인식에 많은 영향을 준다. 잡영이 포함된 영상은 잘못된 골격선 추출에 기인한다. 본 논문에 사용된 Binary Watershed Algorithm은 잡영이 포함된 영상개선에 사용하였고, 이 Algorithm은 많은 다양성을 가지고 있어 여러 분야의 응용에 사용되어지고 있다. 본 논문은 이러한 잡영이 포함된 영상의 개선을 통해 기존의 Morphological 세선화 방법과 Zang-Suen 세선화 방법을 통해 골격선 추출을 평가하였다. 여기에는 아직도 자소의 교차 획에 있어서 효과적인 골격선을 추출하는 문제를 가지고 있다.

  • PDF

A Study on an On-line Handwritten Hangul Character Recognition by Identifying Relative Positions of Strokes (획 상대 위치 판별을 통한 온라인 필기체 한글 문자 인식에 관한 연구)

  • 정진국;김수인;남궁재찬
    • The Journal of Information Technology and Database
    • /
    • v.4 no.2
    • /
    • pp.65-78
    • /
    • 1998
  • 본 논문에서는 획 상대위치 판별을 통한 온라인 필기체 한글 문자 인식에 관하여 연구하였다. 한글을 구성하는 획을 인식하기 위하여 각 획의 시작부분과 끝부분의 방향코드를 이용하였으며, 인식된 획들을 바탕으로 각 획들간의 상대위치 정보를 이용하여 자소를 인식하였다. 온라인 필기체 한글의 경우 획의 모양과 크기가 필기자에 따라 불규칙하게 변하므로 획의 모양보다는 획의 위치를 인식에 더 중요한 자료로 삼아 인식을 행하였다. 6,000자의 온라인 필기체 한글 문자에 대하여 실험한 결과, 문자당 평균인식속도 0.034초, 획 인식률 92.3%와 문자 인식률 94.6%를 보였다. 본 실험의 결과로서 온라인 필기체 인식시스템을 구성함에 있어서 획의 시작 부분과 끝부분의 진행방향이 획인식의 중요 요소임과 획들간의 상대적 위치가 한글 문자 인식에 있어서 중요한 요소임을 밝혔다.

On-line Handwritten Character Recognition with Hidden Markov Models (통계적 방법에 의한 온라인 한글 필기 인식)

  • Sin, Bong-Kee;Kim, Jin-Hyung
    • Annual Conference on Human and Language Technology
    • /
    • 1992.10a
    • /
    • pp.533-542
    • /
    • 1992
  • 손으로 쓴 글씨는 인쇄체와 달리 많은 변형이 있다는 점이 한글 필기 인식에서 가장 큰 장애물로 통한다. 본 논문에서는 이점을 해결하면서 필기에 대한 제한을 대폭 줄인 온라인 한글 인식 방법을 제시하고자 한다. 봉넷(BongNet)은 온라인 한글 필기를 인식하기 위한 네트워크 모델이다. 글씨 인식에 들어가는 여러가지 정보를 네트워크라는 틀 안에 표현한 것 인데, 기본적으로 네트워크 구조 자체가 표현하는 정적 글자 구조 정보와, 글꼴에 따라 달라지는 것으로써 노드간 확률적 이동을 나타내는 동적 정보를 포함한다. 본 모델에 따르면 한글 인식은 네트워크 안에서 최적 경로를 따라 초, 중, 종성 자소열을 찾는 문제로 변환된다. 동적 프로그래밍 기법을 이용하여 그 경로를 찾는 인식 알고리즘은 입력 데이타의 양에 정비례하는 효율성을 갖는다.

  • PDF

Handwritten Hangul Character Segmentation Based on Stroke Extraction (획기반 필기한글 문자분할)

  • Kim, Ho-Yon;Kim, Doo-Sik;Nam, Yun-Seok
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2001.10a
    • /
    • pp.593-596
    • /
    • 2001
  • 본 논문에서는 획기반 필기한글 문자분할 방법을 제안하고 이를 한글단어인식에 적용하였다. 제안된 방법에서는 획 단위의 문자분할을 시도함으로써 불필요한 분할점을 줄일 수 있었을 뿐 아니라 문자간 획의 접촉이나 겹침을 해결할 수 있었다. 실험에서는 이를 단어인식에 적용하여 비교적 높은 인식률을 얻음으로써 제안된 방법의 가능성을 입증하였다. 실험에서 이용한 문자인식기의 성능이 낮음에도 불구하고 비교적 높은 단어인식률을 얻을 수 있었던 것은 의미 있는 획 단위의 문자분할을 통해 불필요한 분할 가능성을 줄였고, 단어사전을 이용함으로써 사전정보를 충분히 활용할 수 있었기 때문이다.

  • PDF

Feature Extraction for Off-line Handwritten Character Recognition using SIFT Descriptor (SIFT 서술자를 이용한 오프라인 필기체 문자 인식 특징 추출 기법)

  • Park, Jung-Guk;Kim, Kyung-Joong
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2010.06c
    • /
    • pp.496-500
    • /
    • 2010
  • 본 논문에서는 SIFT(Scale Invariant Feature Transform) 기술자를 이용하여 오프라인 필기체 문자 인식을 위한 특징 추출방법을 제안한다. 제안하는 방법은 문자의 획의 방향 정보를 제공하는 특징 벡터를 추출함으로써 오프라인 문자 인식에서 성능 향상을 기대할 수 있다. 테스트를 위해 MNIST 필기체 데이터베이스와 UJI Penchar2 필기체 데이터베이스를 이용하였고, BP(backpropagation)신경망과 LDA(Linear Discriminant Analysis), SVM(Support Vector Machine) 분류기에서 성능 테스트를 하였다. 본 논문의 실험결과에서는 일반적으로 사용되는 특징추출로부터 얻어진 특징에 제안된 특징추출을 정합하여 성능항샹을 보인다.

  • PDF

A study of Character segmentation of Handwritten Hangul (필기체한글 글자단위 분할에 관한 연구)

  • 박아람;조범준
    • Proceedings of the Korea Multimedia Society Conference
    • /
    • 2004.05a
    • /
    • pp.831-834
    • /
    • 2004
  • 본 연구에서는 무제약으로 쓰여진 필기체 한글단어를 글자단위로 분할하는 새로운 방법을 제안한다. 이 방법은 글자와 글자사이 흑은 자소사이에 존재하는 배경(Background)정보를 세선화(Thinning) 처리하여 얻은 패스(Path)를 이용하여 글자와 글자사이를 지나는 패스를 결정하는 방법이다. 특히, 이 방법은 분할에 대한 판단을 인식기로 넘기지 않는 외적분할 방법으로 빠른 처리시간을 얻을 수 있고 외적분할 방법의 단정인 정확도를 다른 외적분할 방법에 비해서 높일 수 있었다. 제안한 방법은 필기체 한글에서 많이 발생할 수 있는 중첩(Over lap)글자와 연결(Touched)글자를 분할하는데 효과적인 성능을 보였다. 중첩글자의 경우, 세선화에 의해 생성된 패스가 자연스럽게 중첩된 부분의 사이를 지나가면서 생성되기 때문에 매우 정확한 패스를 얻을 수 있었고, 연결 글자의 경우는 연결된 부분을 판단하고, 후보영역을 선정하여 연결된 부분을 분리해내는 방법을 사용하였다.

  • PDF