• Title/Summary/Keyword: Handwritten Data

Search Result 91, Processing Time 0.256 seconds

Handwritten Numerals Recognition Using an Ant-Miner Algorithm

  • Phokharatkul, Pisit;Phaiboon, Supachai
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.1031-1033
    • /
    • 2005
  • This paper presents a system of handwritten numerals recognition, which is based on Ant-miner algorithm (data mining based on Ant colony optimization). At the beginning, three distinct fractures (also called attributes) of each numeral are extracted. The attributes are Loop zones, End points, and Feature codes. After these data are extracted, the attributes are in the form of attribute = value (eg. End point10 = true). The extraction is started by dividing the numeral into 12 zones. The numbers 1-12 are referenced for each zone. The possible values of Loop zone attribute in each zone are "true" and "false". The meaning of "true" is that the zone contains the loop of the numeral. The Endpoint attribute being "true" means that this zone contains the end point of the numeral. There are 24 attributes now. The Feature code attribute tells us how many lines of a numeral are passed by the referenced line. There are 7 referenced lines used in this experiment. The total attributes are 31. All attributes are used for construction of the classification rules by the Ant-miner algorithm in order to classify 10 numerals. The Ant-miner algorithm is adapted with a little change in this experiment for a better recognition rate. The results showed the system can recognize all of the training set (a thousand items of data from 50 people). When the unseen data is tested from 10 people, the recognition rate is 98 %.

  • PDF

A Study On Handwritten Numeral Recognition Using Numeral Shape Grasp and Divided FSOM (숫자의 형태 이해와 분할된 FSOM을 이용한 필기 숫자 인식에 관한 연구)

  • 서석배;김대진;강대성
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.24 no.8B
    • /
    • pp.1490-1499
    • /
    • 1999
  • This paper proposes a new handwritten numeral recognition method using numeral shape grasps and FSOM (Fuzzy Self-Organizing Map). The proposed algorithm is based on the idea that numeral input data with similar shapes are classified into the same class. Shapes of numeral data are created using lines of external-contact and the class of numeral data is determined by template matching of the shapes. Each class of numeral data has FSOM and feature extraction method, respectively. In this paper, we divide the numeral database into the 16 classes. The divided FSOM model allows not only an independent learning phase of SOM but also step-by-step learning. Experiments using Concordia University handwritten numeral database proved that the proposed algorithm is effective to improve recognition accuracy.

  • PDF

Design and Implementation of a Language Identification System for Handwriting Input Data (필기 입력데이터에 대한 언어식별 시스템의 설계 및 구현)

  • Lim, Chae-Gyun;Kim, Kyu-Ho;Lee, Ki-Young
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.10 no.1
    • /
    • pp.63-68
    • /
    • 2010
  • Recently, to accelerate the Ubiquitous generation, the input interface of the mobile machinery and tools are actively being researched. In addition with the existing interfaces such as the keyboard and curser (mouse), other subdivisions including the handwriting, voice, vision, and touch are under research for new interfaces. Especially in the case of small-sized mobile machinery and tools, there is a increasing need for an efficient input interface despite the small screens. This is because, additional installment of other devices are strictly limited due to its size. Previous studies on handwriting recognition have generally been based on either two-dimensional images or algorithms which identify handwritten data inserted through vectors. Futhermore, previous studies have only focused on how to enhance the accuracy of the handwriting recognition algorithms. However, a problem arisen is that when an actual handwriting is inserted, the user must select the classification of their characters (e.g Upper or lower case English, Hangul - Korean alphabet, numbers). To solve the given problem, the current study presents a system which distinguishes different languages by analyzing the form/shape of inserted handwritten characters. The proposed technique has treated the handwritten data as sets of vector units. By analyzing the correlation and directivity of each vector units, a more efficient language distinguishing system has been made possible.

A study of global minimization analaysis of Langevine competitive learning neural network based on constraction condition and its application to recognition for the handwritten numeral (축합조건의 분석을 통한 Langevine 경쟁 학습 신경회로망의 대역 최소화 근사 해석과 필기체 숫자 인식에 관한 연구)

  • 석진욱;조성원;최경삼
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.466-469
    • /
    • 1996
  • In this paper, we present the global minimization condition by an informal analysis of the Langevine competitive learning neural network. From the viewpoint of the stochastic process, it is important that competitive learning guarantees an optimal solution for pattern recognition. By analysis of the Fokker-Plank equation for the proposed neural network, we show that if an energy function has a special pseudo-convexity, Langevine competitive learning can find the global minima. Experimental results for pattern recognition of handwritten numeral data indicate the superiority of the proposed algorithm.

  • PDF

A Contour Descriptors-Based Generalized Scheme for Handwritten Odia Numerals Recognition

  • Mishra, Tusar Kanti;Majhi, Banshidhar;Dash, Ratnakar
    • Journal of Information Processing Systems
    • /
    • v.13 no.1
    • /
    • pp.174-183
    • /
    • 2017
  • In this paper, we propose a novel feature for recognizing handwritten Odia numerals. By using polygonal approximation, each numeral is segmented into segments of equal pixel counts where the centroid of the character is kept as the origin. Three primitive contour features namely, distance (l), angle (${\theta}$), and arc-tochord ratio (r), are extracted from these segments. These features are used in a neural classifier so that the numerals are recognized. Other existing features are also considered for being recognized in the neural classifier, in order to perform a comparative analysis. We carried out a simulation on a large data set and conducted a comparative analysis with other features with respect to recognition accuracy and time requirements. Furthermore, we also applied the feature to the numeral recognition of two other languages-Bangla and English. In general, we observed that our proposed contour features outperform other schemes.

Divided SOFM training and feature extraction using template matching classifier (템플레이트 매칭 분류를 이용한 SOFM의 분할 학습과 특징 추출)

  • 서석배;하성욱;강대성
    • Proceedings of the IEEK Conference
    • /
    • 1998.06a
    • /
    • pp.705-708
    • /
    • 1998
  • In this paper, a new algorithm is proposed that the template matching is used to devide SOFM (self-organizig feature map) for fast learning and to extract features for considering input data types. In order to verify the superoprity of the proposed algorithm, applied to the recognition of handwritten numerals. Templates of handwritten numerals are created by a line of external-contact.

  • PDF

A Unicode based Deep Handwritten Character Recognition model for Telugu to English Language Translation

  • BV Subba Rao;J. Nageswara Rao;Bandi Vamsi;Venkata Nagaraju Thatha;Katta Subba Rao
    • International Journal of Computer Science & Network Security
    • /
    • v.24 no.2
    • /
    • pp.101-112
    • /
    • 2024
  • Telugu language is considered as fourth most used language in India especially in the regions of Andhra Pradesh, Telangana, Karnataka etc. In international recognized countries also, Telugu is widely growing spoken language. This language comprises of different dependent and independent vowels, consonants and digits. In this aspect, the enhancement of Telugu Handwritten Character Recognition (HCR) has not been propagated. HCR is a neural network technique of converting a documented image to edited text one which can be used for many other applications. This reduces time and effort without starting over from the beginning every time. In this work, a Unicode based Handwritten Character Recognition(U-HCR) is developed for translating the handwritten Telugu characters into English language. With the use of Centre of Gravity (CG) in our model we can easily divide a compound character into individual character with the help of Unicode values. For training this model, we have used both online and offline Telugu character datasets. To extract the features in the scanned image we used convolutional neural network along with Machine Learning classifiers like Random Forest and Support Vector Machine. Stochastic Gradient Descent (SGD), Root Mean Square Propagation (RMS-P) and Adaptative Moment Estimation (ADAM)optimizers are used in this work to enhance the performance of U-HCR and to reduce the loss function value. This loss value reduction can be possible with optimizers by using CNN. In both online and offline datasets, proposed model showed promising results by maintaining the accuracies with 90.28% for SGD, 96.97% for RMS-P and 93.57% for ADAM respectively.

Design of COS for smart card user authentication using signature (서명을 이용한 스마트카드 사용자 인증을 위한 COS 설계)

  • 송영상;신인철
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.41 no.4
    • /
    • pp.103-112
    • /
    • 2004
  • This paper suggests the way to realize smart card security system by using handwritten signature instead of a password which is traditionally used for user authentication. Because of the familiarity of signature we don't need to try to remember the password and signature is difficult to be used by guess or illegal forced situation. The feature data of handwritten signature is large, so we designed COS which is consist of special commands for processing user's handwritten signature data, user authentication, and basic commands based on ISO 7816-3. Also protocol among user, smart card terminal and DB server is designed. In registration process, the feature data of user signature is saved in both a DB server and a smart card. User authentication is processed by comparing the user signature and the saved feature data in a smart card and in a DB server. And the authentication result and hash value of signature data in DB server are transferred to smart card. During this process the authentication between DB server and user is finished. The proposed security system has more higher level of security in user authentication of smart card and it will Provide safer and more convenient security services.

Matching Algorithm for Hangul Recognition Based on PDA

  • Kim Hyeong-Gyun;Choi Gwang-Mi
    • Journal of information and communication convergence engineering
    • /
    • v.2 no.3
    • /
    • pp.161-166
    • /
    • 2004
  • Electronic Ink is a stored data in the form of the handwritten text or the script without converting it into ASCII by handwritten recognition on the pen-based computers and Personal Digital Assistants(PDA) for supporting natural and convenient data input. One of the most important issue is to search the electronic ink in order to use it. We proposed and implemented a script matching algorithm for the electronic ink. Proposed matching algorithm separated the input stroke into a set of primitive stroke using the curvature of the stroke curve. After determining the type of separated strokes, it produced a stroke feature vector. And then it calculated the distance between the stroke feature vector of input strokes and one of strokes in the database using the dynamic programming technique.