• Title/Summary/Keyword: Handwriting Segmentation

Search Result 12, Processing Time 0.021 seconds

Enhanced technique for Arabic handwriting recognition using deep belief network and a morphological algorithm for solving ligature segmentation

  • Essa, Nada;El-Daydamony, Eman;Mohamed, Ahmed Atwan
    • ETRI Journal
    • /
    • v.40 no.6
    • /
    • pp.774-787
    • /
    • 2018
  • Arabic handwriting segmentation and recognition is an area of research that has not yet been fully understood. Dealing with Arabic ligature segmentation, where the Arabic characters are connected and unconstrained naturally, is one of the fundamental problems when dealing with the Arabic script. Arabic character-recognition techniques consider ligatures as new classes in addition to the classes of the Arabic characters. This paper introduces an enhanced technique for Arabic handwriting recognition using the deep belief network (DBN) and a new morphological algorithm for ligature segmentation. There are two main stages for the implementation of this technique. The first stage involves an enhanced technique of the Sari segmentation algorithm, where a new ligature segmentation algorithm is developed. The second stage involves the Arabic character recognition using DBNs and support vector machines (SVMs). The two stages are tested on the IFN/ENIT and HACDB databases, and the results obtained proved the effectiveness of the proposed algorithm compared with other existing systems.

Graphemes Segmentation for Arabic Online Handwriting Modeling

  • Boubaker, Houcine;Tagougui, Najiba;El Abed, Haikal;Kherallah, Monji;Alimi, Adel M.
    • Journal of Information Processing Systems
    • /
    • v.10 no.4
    • /
    • pp.503-522
    • /
    • 2014
  • In the cursive handwriting recognition process, script trajectory segmentation and modeling represent an important task for large or open lexicon context that becomes more complicated in multi-writer applications. In this paper, we will present a developed system of Arabic online handwriting modeling based on graphemes segmentation and the extraction of its geometric features. The main contribution consists of adapting the Fourier descriptors to model the open trajectory of the segmented graphemes. To segment the trajectory of the handwriting, the system proceeds by first detecting its baseline by checking combined geometric and logic conditions. Then, the detected baseline is used as a topologic reference for the extraction of particular points that delimit the graphemes' trajectories. Each segmented grapheme is then represented by a set of relevant geometric features that include the vector of the Fourier descriptors for trajectory shape modeling, normalized metric parameters that model the grapheme dimensions, its position in respect to the baseline, and codes for the description of its associated diacritics.

Character Segmentation in Chinese Handwritten Text Based on Gap and Character Construction Estimation

  • Zhang, Cheng Dong;Lee, Guee-Sang
    • International Journal of Contents
    • /
    • v.8 no.1
    • /
    • pp.39-46
    • /
    • 2012
  • Character segmentation is a preprocessing step in many offline handwriting recognition systems. In this paper, Chinese characters are categorized into seven different structures. In each structure, the character size with the range of variations is estimated considering typical handwritten samples. The component removal and merge criteria are presented to remove punctuation symbols or to merge small components which are part of a character. Finally, the criteria for segmenting the adjacent characters concerning each other or overlapped are proposed.

Word Segmentation Algorithm for Handwritten Documents based on k-means Clustering (k-평균 클러스터링을 이용한 필기 문서 영상의 단어 분리법)

  • Ryu, Jewoong;Cho, Nam Ik
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2014.06a
    • /
    • pp.38-41
    • /
    • 2014
  • 본 논문에서는 필기 문서 영상을 분석하여 단어 단위로 요소들을 분할하는 방법을 제안한다. 일반적으로 인쇄 문서에 비하여 필기 문서에서는 글자 간 간격이 일정하지 않을 뿐만 아니라 필기자 또는 작성된 언어에 따라 특성이 매우 다르게 나타나기 때문에 단어를 분리하는 것은 어려운 문제로 간주되었고 많은 연구가 진행되었다. 제안하는 방법은 이 문제를 해결하기 위하여 글자 획의 두께를 고려하여 정규화시킨 각 연결 요소간 간격과 간격 안에 존재하는 글자 픽셀의 수로 구성된 2 차원의 특징값을 추출하였다. 이 특징값을 바탕으로, 제안하는 방법은 k-평균 클러스터링을 이용하여 각 텍스트라인을 구성하는 연결 요소간 간격을 단어 사이의 간격과 단어 내부 글자간의 간격으로 분류하였다. ICDAR 2013 Handwriting Segmentation Contest 데이터베이스에 대한 실험 결과 제안하는 방법은 가장 우수한 성능을 나타내었다.

  • PDF

Augmentation of Hidden Markov Chain for Complex Sequential Data in Context

  • Sin, Bong-Kee
    • Journal of Multimedia Information System
    • /
    • v.8 no.1
    • /
    • pp.31-34
    • /
    • 2021
  • The classical HMM is defined by a parameter triple �� = (��, A, B), where each parameter represents a collection of probability distributions: initial state, state transition and output distributions in order. This paper proposes a new stationary parameter e = (e1, e2, …, eN) where N is the number of states and et = P(|xt = i, y) for describing how an input pattern y ends in state xt = i at time t followed by nothing. It is often said that all is well that ends well. We argue here that all should end well. The paper sets the framework for the theory and presents an efficient inference and training algorithms based on dynamic programming and expectation-maximization. The proposed model is applicable to analyzing any sequential data with two or more finite segmental patterns are concatenated, each forming a context to its neighbors. Experiments on online Hangul handwriting characters have proven the effect of the proposed augmentation in terms of highly intuitive segmentation as well as recognition performance and 13.2% error rate reduction.

A Study on the Preprocessing Method Using Construction of Watershed for Character Image segmentation

  • Nam Sang Yep;Choi Young Kyoo;Kwon Yun Jung;Lee Sung Chang
    • Proceedings of the IEEK Conference
    • /
    • 2004.08c
    • /
    • pp.814-818
    • /
    • 2004
  • Off-line handwritten character recognition is in difficulty of incomplete preprocessing because it has not dynamic and timing information besides has various handwriting, extreme overlap of the consonant and vowel and many error image of stroke. Consequently off-line handwritten character recognition needs to study about preprocessing of various methods such as binarization and thinning. This paper considers running time of watershed algorithm and the quality of resulting image as preprocessing For off-line handwritten Korean character recognition. So it proposes application of effective watershed algorithm for segmentation of character region and background region in gray level character image and segmentation function for binarization image and segmentation function for binarization by extracted watershed image. Besides it proposes thinning methods which effectively extracts skeleton through conditional test mask considering running time and quality. of skeleton, estimates efficiency of existing methods and this paper's methods as running time and quality. Watershed image conversion uses prewitt operator for gradient image conversion, extracts local minima considering 8-neighborhood pixel. And methods by using difference of mean value is used in region merging step, Converted watershed image by means of this methods separates effectively character region and background region applying to segmentation function. Average execution time on the previous method was 2.16 second and on this paper method was 1.72 second. We prove that this paper's method removed noise effectively with overlap stroke as compared with the previous method.

  • PDF

Stroke Width-Based Contrast Feature for Document Image Binarization

  • Van, Le Thi Khue;Lee, Gueesang
    • Journal of Information Processing Systems
    • /
    • v.10 no.1
    • /
    • pp.55-68
    • /
    • 2014
  • Automatic segmentation of foreground text from the background in degraded document images is very much essential for the smooth reading of the document content and recognition tasks by machine. In this paper, we present a novel approach to the binarization of degraded document images. The proposed method uses a new local contrast feature extracted based on the stroke width of text. First, a pre-processing method is carried out for noise removal. Text boundary detection is then performed on the image constructed from the contrast feature. Then local estimation follows to extract text from the background. Finally, a refinement procedure is applied to the binarized image as a post-processing step to improve the quality of the final results. Experiments and comparisons of extracting text from degraded handwriting and machine-printed document image against some well-known binarization algorithms demonstrate the effectiveness of the proposed method.

Region Decision Using Modified ICM Method (변형된 ICM 방식에 의한 영역판별)

  • Hwang Jae-Ho
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.43 no.5 s.311
    • /
    • pp.37-44
    • /
    • 2006
  • In this paper, a new version of the ICM method(MICM, modified ICM) in which the contextual information is modelled by Markov random fields (MRF) is introduced. To extract the feature, a new local MRF model with a fitting block neighbourhood is proposed. This model selects contextual information not only from the relative intensity levels but also from the geometrically directional position of neighbouring cliques. Feature extraction depends on each block's contribution to the local variance. They discriminates it into several regions, for example context and background. Boundaries between these regions are also distinctive. The proposed algerian performs segmentation using directional block fitting procedure which confines merging to spatially adjacent elements and generates a partition such that pixels in unified cluster have a homogeneous intensity level. From experiment with ink rubbed copy images(Takbon, 拓本), this method is determined to be quite effective for feature identification. In particular, the new algorithm preserves the details of the images well without over- and under-smoothing problem occurring in general iterated conditional modes (ICM). And also, it may be noted that this method is applicable to the handwriting recognition.

An Approach for Efficient Handwritten Word Recognition Using Dynamic Programming Matching (동적 프로그래밍 정합을 이용한 효율적인 필기 단어 인식 방법)

  • 김경환
    • Journal of the Korean Institute of Telematics and Electronics C
    • /
    • v.36C no.4
    • /
    • pp.54-64
    • /
    • 1999
  • This paper proposes an efficient handwritten English word recognition scheme which can be applied practical applications. To effectively use the lexicon which is available in most handwriting related applications, the lexicon entries are introduced in the early stage of the recognition. Dynamic programming is used for matching between over-segmented character segments and letters in the lexicon entries. Character segmentation statistics which can be obtained while the training is being performed are used to adjust the matching window size. Also, the matching results between the character segments and the letters in the lexicon entries are cached to avoid repeat of the same computation. In order to verify the effectiveness of the proposed methods, several experiments were performed using thousands of word images with various writing styles. The results show that the proposed methods significantly improve the matching speed as well as the accuracy.

  • PDF

An Efficient Character Image Enhancement and Region Segmentation Using Watershed Transformation (Watershed 변환을 이용한 효율적인 문자 영상 향상 및 영역 분할)

  • Choi, Young-Kyoo;Rhee, Sang-Burm
    • The KIPS Transactions:PartB
    • /
    • v.9B no.4
    • /
    • pp.481-490
    • /
    • 2002
  • Off-line handwritten character recognition is in difficulty of incomplete preprocessing because it has not dynamic information has various handwriting, extreme overlap of the consonant and vowel and many error image of stroke. Consequently off-line handwritten character recognition needs to study about preprocessing of various methods such as binarization and thinning. This paper considers running time of watershed algorithm and the quality of resulting image as preprocessing for off-line handwritten Korean character recognition. So it proposes application of effective watershed algorithm for segmentation of character region and background region in gray level character image and segmentation function for binarization by extracted watershed image. Besides it proposes thinning methods that effectively extracts skeleton through conditional test mask considering routing time and quality of skeleton, estimates efficiency of existing methods and this paper's methods as running time and quality. Average execution time on the previous method was 2.16 second and on this paper method was 1.72 second. We prove that this paper's method removed noise effectively with overlap stroke as compared with the previous method.