• Title/Summary/Keyword: Handover Downlink signal

Search Result 5, Processing Time 0.018 seconds

Suboptimal Adaptive Handover Method Considering Uplink and Downlink Signals (상.하향 링크 신호를 고려한 준 최적의 적응적 하드 핸드오버 기법)

  • Cho, Young-Bo;Han, Seung-Youp;Bang, Keuk-Joon;Hong, Dae-Sik
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.31 no.12C
    • /
    • pp.1273-1279
    • /
    • 2006
  • In this paper, we address the design of adaptive handover schemes based on the signal strength measurement for cellular communications systems. Conventional handover algorithms, which are based only on the downlink measurement, cannot guarantee the required uplink quality because uplink channel can differ greatly from downlink channel quality. Therefore, we proposes a new suboptimal adaptive handover algorithm that considers both the uplink and downlink channel quality in order to achieve the best cell selection gains when there is a wide difference between the uplink and downlink signal quality. Simulation results show that the proposed scheme achieves better performance compared to conventional handover schemes.

Handover Scheme Using Downlink and Uplink Signals (순방향 및 역방향 신호를 이용한 핸드오버 기법)

  • Cho, Sung-Hyun;Kwun, Jong-Hyung
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.33 no.5A
    • /
    • pp.542-548
    • /
    • 2008
  • This paper proposes a handover scheme using uplink and downlink signals in IEEE 802.16e systems. Exploiting the channel reciprocity in TDD systems, the proposed scheme triggers handover initiation process using uplink signal. In addition, it exploits the uplink and downlink hysteresis to determine the handover direction. Simulation results show that the proposed algorithm with joint hysteresis reduces the outage probability by about 10% compared with the mobile assisted handover in IEEE 802.16e.

Analysis of Macro-Diversity in LTE-Advanced

  • Kim, Gun-Yeob Peter;Lee, Jung-Ah C.;Hong, Sang-Jin
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.5 no.9
    • /
    • pp.1596-1612
    • /
    • 2011
  • Coordinated Multi-Point (CoMP) transmission / reception is being studied in Long Term Evolution-Advanced (LTE-A) for future evolution of the $3^{rd}$ Generation Partnership Project (3GPP) LTE. Support of soft handover is essential for improving the performance of cell edge users. CoMP provides a natural framework for enabling soft handover in the LTE system. This paper evaluates the soft handover gain in LTE-A downlink. Mathematical analysis of signal to interference plus noise ratio (SINR) gain and the handover margins for soft handover and hard handover are derived. CoMP system model is developed and an inter-cell and intra-cell interference model is derived, taking into account the pathloss, shadowing, cell loading, and traffic activity. Reference signal received power (RSRP) is used to define the triggers and the measurements for soft handover. Our results indicate that parameter choices such as handover margin and the CoMP set size impact CoMP performance gain.

A Spectrally Efficient Macrodiversity Handover Technique for Interference-Limited IEEE 802.16j Multihop Wireless Relay Networks

  • Sultan, Jamil;Misran, Norbahiah;Ismail, Mahamod;Islam, Mohammad Tariqul
    • ETRI Journal
    • /
    • v.33 no.4
    • /
    • pp.558-568
    • /
    • 2011
  • In this paper, we propose an efficient macrodiversity handover (MDHO) technique for time-division-based interference-limited IEEE 802.16j multihop wireless relay networks. In the proposed MDHO, when the diversity set members of the mobile station (MS) are a base station (BS) and relay station (RS), the MS receives the signal transmitted by the BS in the first phase. During the second phase, it also receives the simultaneous transmissions of the BS and RS. Furthermore, when the diversity set members are two RSs or two BSs, the MS receives only the simultaneous transmissions of the diversity set members. The superiority of the proposed MDHO is validated using analytical and simulation results. The performance analysis metrics are the average downlink (DL) carrier to interference and noise ratio (CINR), the average DL spectral efficiency, and the average service outage probability. Evaluation results show that the proposed MDHO significantly outperforms the conventional MDHO. The CINR gain achieved using the proposed MDHO is 4.71 dB compared to the conventional MDHO.

Downlink Parallel Transmit Power Control Algorithm during Soft handover for WCDMA System (WCDMA 소프트 핸드오버 시 하향 병렬 전송 전력 제어 알고리즘)

  • Han Young ok;Seo kyung Jin;Park Sung kwon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.30 no.4A
    • /
    • pp.271-281
    • /
    • 2005
  • This paper for establishing the reliability of the TPC command is introduced, where the soft symbol of the TPC command itself is directed used as a reliability indicator. In addition to the new reliability estimation, the concept of parallel use of TPC algorithms is presented. The results show that the soft symbol reliability estimation decrease the $P_{tx}$ levels with 0.3 dB, thus providing a useful capacity gain. The parallel use of 2 to 4 algorithms is also shown to decrease the sensitivity of the algorithms to the algorithm thresholds used, and thus increase the feasibility of the algorithms in a real world networks.