• Title/Summary/Keyword: Handleability

Search Result 3, Processing Time 0.014 seconds

A Study of Partial Carbonisation for the Development of Pitch Based Carbon Fibres

  • Aggarwal, R.K.;Bhatia, G.;Raman, V.;Saha, M.;Mishra, A.
    • Carbon letters
    • /
    • v.5 no.1
    • /
    • pp.23-26
    • /
    • 2004
  • A study of partial carbonisation of green pitch fibres to temperatures in the range of 500-$1000^{\circ}C$ was carried out on three precursors - a neat pitch and two polymer modified pitches, with a view to find out a suitable temperature at which the fibres acquire considerably improved toughness or handleability (compared to that in the green stage) for their subsequent processing into carbon fibres. A partial carbonisation temperature of 500-$600^{\circ}C$ has been identified to result in a remarkable improvement in the toughness/handleability of the fibres in all the three cases. However, from techno-economical considerations, the neat pitch appears to provide the best precursor system for the production of pitch based carbon fibres.

  • PDF

Experimental Evaluation of Cohesion Properties for Various Coals

  • Kim, Minsu;Lee, Yongwoon;Ryu, Changkook;Park, Ho Young;Lee, Hyun Soo
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.2 no.2
    • /
    • pp.279-284
    • /
    • 2016
  • Assessing the handling properties of coal becomes a major issue for the operation of a fuel supply system in power plants, due to the increased types of coal imported into Korea. In this study, the cohesion strengths of 13 bituminous and sub-bituminous coals from different countries were tested by measuring the amount of force that leads to a failure of consolidated particles. The particle size was in the range of 0.1-2.8 mm, which represents the coarse particles before pulverization. While the cohesion strength was proportional to the compression force in the tested range, the effects of the surface moisture content and the weight fraction of fines were crucial for cohesive coals. At fixed conditions of surface moisture and particle size, large variations were found in the cohesion propensity between coals. For coals of 0.1-0.5 mm with the moisture added close to the critical value, cohesive coals had the density over $900kg/m^3$ after consolidation. The cohesion propensity was not correlated with the basic properties of coals with sufficient statistical significance.

Electrodeposition onto the Surface of Carbon Fiber and Its Application to Composites (II) - CFRC with MVEMA and EMA Interphase - (탄소섬유 표면에의 고분자 전착과 복합재료 물성 (II) - MVEMA 및 EMA 계면상을 갖는 탄소섬유 복합재료 -)

  • Kim, Minyoung;Kim, Jihong;Bae, Jongwoo;Kim, Wonho;Hwang, Byungsun;Choi, Youngsun
    • Applied Chemistry for Engineering
    • /
    • v.10 no.3
    • /
    • pp.336-342
    • /
    • 1999
  • Various surface treatment techniques can be applied onto the surface of carbon fibers to increase interlaminar shear strength (ILSS). In a commerciaI treatment, first, surface of carbon fiber was oxidized, after that, a sizing agent was coated to improve handleability and adhesion to the matrix. Carbon fiber reinforced composites (CFRC) which is made of these fibers show excellent ILSS but show low vaIues of impact strength In this study, reactive and ductile interphase was introduced between fiber and matrix to increase both the ILSS and impact strength. By using electric conductivity of carbon fibers, flexible polymers which have ionizable group, i.e., MVEMA and EMA, were coated onto the surface (oxidized) of carbon fiber by the technique of electrodeposition. ILSS and impact strength of composites were evaluated according to the surface treatments, i.e., commercial sizing treatment, interphase introduction, and without sizing treatment. Izod impact strength and ILSS of CFRC were simultaneously improved in thc thickness range of $0.08{\sim}0.12{\mu}m$ of MVEMA interphase. Water resistance of the composites was decreased by introducing MVEMA interphase.

  • PDF