• 제목/요약/키워드: Hand-Geometry

검색결과 175건 처리시간 0.029초

타원곡선의 역사 개관 (A Historical Overview of Elliptic Curves)

  • 고영미;이상욱
    • 한국수학사학회지
    • /
    • 제28권2호
    • /
    • pp.85-102
    • /
    • 2015
  • Elliptic curves are a common theme among various fields of mathematics, such as number theory, algebraic geometry, complex analysis, cryptography, and mathematical physics. In the history of elliptic curves, we can find number theoretic problems on the one hand, and complex function theoretic ones on the other. The elliptic curve theory is a synthesis of those two indeed. As an overview of the history of elliptic curves, we survey the Diophantine equations of 3rd degree and the congruent number problem as some of number theoretic trails of elliptic curves. We discuss elliptic integrals and elliptic functions, from which we get a glimpse of idea where the name 'elliptic curve' came from. We explain how the solution of Diophantine equations of 3rd degree and elliptic functions are related. Finally we outline the BSD conjecture, one of the 7 millennium problems proposed by the Clay Math Institute, as an important problem concerning elliptic curves.

고등해석과 유전자 알고리즘을 이용한 반강접 강뼈대 구조물의 직접설계시스템의 최적화 (Optimization of direct design system of semi-rigid steel frames using advanced analysis and genetic algorithm)

  • 최세휴
    • 한국강구조학회 논문집
    • /
    • 제18권6호
    • /
    • pp.707-716
    • /
    • 2006
  • 본 논문에서는 고등해석과 유전자 알고리즘을 이용한 반강접 강뼈대 구조물의 직접설계시스템의 최적화를 수행하였다. 고등해석은 접합부의 비선형, 기하학적 비선형 및 재료적 비선형을 고려한다. 기하학적 비선형은 안정함수를 사용하여 고려하였으며, 재료적 비선형은 CRC 접선 탄성계수와 포물선 함수를 사용함으로서 고려하였다. 접합부의 비선형은 Kishi와 Chen이 제안한 3가지 매개변수를 가지는 파워모델을 사용하여 고려하였다. 최적화 기법으로는 유전자 알고리즘을 사용하였다. 목적함수는 구조물의 중량을 사용하였으며, 제약조건식은 구조시스템의 하중-저항능력, 처짐, 층간 수평변위 및 연성요구 조건을 고려하였다. 제안된 방법에 의한 설계결과를 기존의 방법들과 비교하였다.

Structural analysis and optimization of large cooling tower subjected to wind loads based on the iteration of pressure

  • Li, Gang;Cao, Wen-Bin
    • Structural Engineering and Mechanics
    • /
    • 제46권5호
    • /
    • pp.735-753
    • /
    • 2013
  • The wind load is always the dominant load of cooling tower due to its large size, complex geometry and thin-wall structure. At present, when computing the wind-induced response of the large-scale cooling tower, the wind pressure distribution is obtained based on code regulations, wind tunnel test or computational fluid dynamic (CFD) analysis, and then is imposed on the tower structure. However, such method fails to consider the change of the wind load with the deformation of cooling tower, which may result in error of the wind load. In this paper, the analysis of the large cooling tower based on the iterative method for wind pressure is studied, in which the advantages of CFD and finite element method (FEM) are combined in order to improve the accuracy. The comparative study of the results obtained from the code regulations and iterative method is conducted. The results show that with the increase of the mean wind speed, the difference between the methods becomes bigger. On the other hand, based on the design of experiment (DOE), an approximate model is built for the optimal design of the large-scale cooling tower by a two-level optimization strategy, which makes use of code-based design method and the proposed iterative method. The results of the numerical example demonstrate the feasibility and efficiency of the proposed method.

전기습윤 현상에서의 선장력과 전기 이중층의 영향에 대한 해석 (Analysis of Effects of Line Tension and Electrical Double Layers on Electrowetting Phenomenon)

  • 정상국;강관형;이정묵;강인석
    • 대한기계학회논문집B
    • /
    • 제27권7호
    • /
    • pp.956-962
    • /
    • 2003
  • The Lippmann-Young equation has been widely used in electrowetting to predict the contact-angle change of a droplet on a insulating substrate with respect to the externally-applied electrical voltage. The Lippmann-Young equation is derived by assuming a droplet as a perfect conductor, so that the effect of the electrical double layer and the line tension are not taken into account. The validity of the assumption has never been checked before, systematically. In the present investigation, a modified Lippmann-Young equation is derived taking into account of the effect of the electrical double layer and the line tension. To assess their influence on contact-angle change in electrowetting, the electrostatic field around the three-phase contact line is analyzed by solving the Poisson-Boltzmann equation numerically. The validity of the numerical methods is verified by using the past theoretical results on the electrostatic field around a wedge-shaped geometry, which shows fairly good agreement. The results of the present investigation clearly indicate that the effect of the electrical double layer and the line tension is negligible for a millimeter-sized droplet. On the other hand, for a micron-sized droplet, the effect of the line tension can become a dominating factor which controls the contact-angle change in electrowetting.

딥 러닝과 마르코프 랜덤필드를 이용한 동영상 내 그림자 검출 (Moving Shadow Detection using Deep Learning and Markov Random Field)

  • 이종택;강현우;임길택
    • 한국멀티미디어학회논문지
    • /
    • 제18권12호
    • /
    • pp.1432-1438
    • /
    • 2015
  • We present a methodology to detect moving shadows in video sequences, which is considered as a challenging and critical problem in the most visual surveillance systems since 1980s. While most previous moving shadow detection methods used hand-crafted features such as chromaticity, physical properties, geometry, or combination thereof, our method can automatically learn features to classify whether image segments are shadow or foreground by using a deep learning architecture. Furthermore, applying Markov Random Field enables our system to refine our shadow detection results to improve its performance. Our algorithm is applied to five different challenging datasets of moving shadow detection, and its performance is comparable to that of state-of-the-art approaches.

엔탈피 모델을 이용한 레이저 용융풀 형상에 대한 수치해석연구 (NUMERICAL SIMULATION OF LASER WELD POOL GEOMETRY USING ENTHALPY METHOD)

  • 이태봉;정하승;신승원
    • 한국전산유체공학회지
    • /
    • 제18권4호
    • /
    • pp.61-68
    • /
    • 2013
  • Laser welding is widely used in the industry for the advantage of small heat affected zone and short weld process time. Conduction limit welding can be used to modify the surface characteristic and it is important to identify the heat affecting area correctly for the improvement of manufacturing accuracy. Since time and length scale associated with laser welding process are extremely small, numerical study can be a useful tool. In this study, two-dimensional axi-symmetric version of energy equation with enthalpy method has been used to analyze the effect of laser input conditions on final shape by the laser welding process. The proposed numerical procedure has been benchmarked with several experimental results and compared well. The modified Marangoni and Peclet number have been introduced using controllable input variables. Simple parametric researches have been performed for high Pr number material. The results show that higher Marangoni number increase fluid mixing, thus generating convex type weld pool. On the other hand, the width of the weld pool is proportional to Peclet number.

Effect of the Ni Catalyst Size and Shape on the Variation of the Geometries for the As-grown Carbon Coils

  • Jang, Chang-Young;Kim, Sung-Hoon
    • 한국표면공학회지
    • /
    • 제46권4호
    • /
    • pp.175-180
    • /
    • 2013
  • Carbon nanofilaments (CNFs) could be synthesized using $C_2H_2/H_2$ as source gases and $SF_6$ as an incorporated additive gas under thermal chemical vapor deposition system. Ni powders were used as the catalyst for the formation of the CNFs. During the initial deposition stage, the initiation of the CNFs on the Ni catalyst was investigated. The geometries of the as-grown CNFs on Ni catalyst were strongly dependent on the size and/or the shape of Ni catalyst. Small size catalyst (<150 nm in diameter) gives rise to the unidirectional growth of the CNFs. On the other hand, large size catalyst (150~500 nm), the bidirectional growth of the CNFs could be observed. Particularly, the well faceted parallelogram-shaped Ni catalyst could give rise to the bidirectional growth of the CNFs having the symmetrically opposite direction. Eventually, these bidirectional growths of CNFs were understood to form the well-developed carbon microcoils (CMCs). Based on these results, the optimal shape and the size of the Ni catalyst to form the CMCs were discussed.

Extended Bifurcated Hydrogen Bonds Network Material of Copper(II) Complexes with 2-Dimethylaminomethyl-3-hydroxypyridine: Structures and Magnetic Properties

  • Kang, Sung-Kwon;Lee, Hong-Woo;Sengottuvelan, Nallathambi;Kim, Young-Inn
    • Bulletin of the Korean Chemical Society
    • /
    • 제33권1호
    • /
    • pp.95-99
    • /
    • 2012
  • Two novel copper(II) complexes, [Cu(dmamhp)$(H_2O)_2(SO_4)]_n$ (1) and [Cu(dmamhp)$(NO_3)_2(H_2O)]{\cdot}H_2O$ (2) [dmamhp = 2-dimethylaminomethyl-3-hydroxypyridine] have been synthesized and structurally characterized by single crystal X-ray diffraction analysis. Compound 1 displays a double one-dimensional chains structure, in which each chain is constituted with the distorted octahedral copper(II) complex bridged through bidentate sulfate ligands resulting in a coordination polymer. The bifurcated hydrogen bonds and $\pi-\pi$ interactions play important roles in the formation of the double chains structure. On the other hand, compound 2 adopts a distorted square pyramidal geometry around copper(II) ion and exists as a discrete monomer. There are intermolecular bifurcated hydrogen bonds and $\pi-\pi$ stacking interactions between the monomeric units. The magnetic properties revealed that the paramagnetic behaviors are dominantly manifested and there are no intermolecular magnetic interactions in both compound 1 and 2.

Biometric 정보를 기반으로 하는 사용자 인증 스킴의 안전성 분석 (Security Analysis of a Biometric-Based User Authentication Scheme)

  • 이영숙
    • 디지털산업정보학회논문지
    • /
    • 제10권1호
    • /
    • pp.81-87
    • /
    • 2014
  • Password-based authentication using smart card provides two factor authentications, namely a successful login requires the client to have a valid smart card and a correct password. While it provides stronger security guarantees than only password authentication, it could also fail if both authentication factors are compromised ((1) the user's smart card was stolen and (2) the user's password was exposed). In this case, there is no way to prevent the adversary from impersonating the user. Now, the new technology of biometrics is becoming a popular method for designing a more secure authentication scheme. In terms of physiological and behavior human characteristics, biometric information is used as a form of authentication factor. Biometric information, such as fingerprints, faces, voice, irises, hand geometry, and palmprints can be used to verify their identities. In this article, we review the biometric-based authentication scheme by Cheng et al. and provide a security analysis on the scheme. Our analysis shows that Cheng et al.'s scheme does not guarantee any kind of authentication, either server-to-user authentication or user-to-server authentication. The contribution of the current work is to demonstrate these by mounting two attacks, a server impersonation attack and a user impersonation attack, on Cheng et al.'s scheme. In addition, we propose the enhanced authentication scheme that eliminates the security vulnerabilities of Cheng et al.'s scheme.

IKONOS 위성영상을 이용한 변화 탐지 (Change Detection Using the IKONOS Satellite Images)

  • 강길선;신상철;조규전
    • 대한공간정보학회지
    • /
    • 제11권2호
    • /
    • pp.61-66
    • /
    • 2003
  • 지형도 제작, 환경, 산림, 시설물 탐지 등의 분야에서 위성영상이나 항공사진을 이용하여 변화탐지가 수행되어 왔다. Landsat이나NOAA 위성의 저해상 영상은 자동 변화탐지에 사용되어 왔으며, 항공사진과 같은 고해상 영상은 판독에 의한 변화탐지에 사용되었다. 고해상 위성영상을 이용하여 이러한 자동 변화탐지와 수동 변화탐지를 통합하려는 시도가 있지만, 그림자, 중심 투영 영상으로 인한 건물의 왜곡, 정밀한 기하보정 등의 문제점이 발견되고 있다. 본 논문에서는 IKONOS 위성영상을 이용하여 변화 탐지를 수행하고, 이에 따른 문제점을 살펴보도록 하겠다.

  • PDF