• Title/Summary/Keyword: Hand user interface

Search Result 199, Processing Time 0.023 seconds

A Study on Comparative Experiment of Hand-based Interface in Immersive Virtua Reality (몰입형 가상현실에서 손 기반 인터페이스의 비교 실험에 관한 연구)

  • Kim, Jinmo
    • Journal of the Korea Computer Graphics Society
    • /
    • v.25 no.2
    • /
    • pp.1-9
    • /
    • 2019
  • This study compares hand-based interfaces to improve a user's virtual reality (VR) presence by enhancing user immersion in VR interactions. To provide an immersive experience, in which users can more directly control the virtual environment and objects within that environment using their hands and, to simultaneously minimize the device burden on users using immersive VR systems, we designed two experimental interfaces (hand motion recognition sensor- and controller-based interactions). Hand motion recognition sensor-based interaction reflects accurate hand movements, direct gestures, and motion representations in the virtual environment, and it does not require using a device in addition to the VR head mounted display (HMD). Controller-based interaction designs a generalized interface that maps the gesture to the controller's key for easy access to the controller provided with the VR HMD. The comparative experiments in this study confirm the convenience and intuitiveness of VR interactions using the user's hand.

Functional Analysis and Design of Touch User Interface in Mobile Game (모바일게임 터치사용자인터페이스(TUI)의 기능적 분석 및 설계)

  • Kim, Mi-Jin;Yoon, Jin-Hong
    • The Journal of the Korea Contents Association
    • /
    • v.10 no.1
    • /
    • pp.138-146
    • /
    • 2010
  • Currently mobile phones possess the new features including the control interface provided with an ease, an intuition, and a variety and the display ensured for wide area. Mobile phones mounted with the touch screen release actively due to such strengths. This is the mega trend of the development of the latest mobile game. Mobile games set to the past keypad input system have changed for adaptation in the input environment and the progressive development. Consequently it is necessary to research for 'Touch User Interface(TUI)' of mobile games fixed into input environment by "Touch screen". This study have concreted the application method of touch game through the comparison analysis with the past game and implemented touch mobile game based on usability for ten touch mobile game titles released from the inside and outside of the country in oder to apply the touch interface fixed in the game to the hand-hold device with the function of touch interface. The result of this study have two implications. First it enhances the playability and diversity of game genre restricted by reason of the limitation of the past keypad input device. Second, it utilizes the basis for the standard of the interface of the touch mobile game by genre.

Controlling Position of Virtual Reality Contents with Mouth-Wind and Acceleration Sensor

  • Kim, Jong-Hyun
    • Journal of the Korea Society of Computer and Information
    • /
    • v.24 no.4
    • /
    • pp.57-63
    • /
    • 2019
  • In this paper, we propose a new framework to control VR(Virtual reality) contents in real time using user's mouth-wind and acceleration sensor of mobile device. In VR, user interaction technology is important, but various user interface methods is still lacking. Most of the interaction technologies are hand touch screen touch or motion recognition. We propose a new interface technology that can interact with VR contents in real time using user's mouth-wind method with acceleration sensor. The direction of the mouth-wind is determined using the angle and position between the user and the mobile device, and the control position is adjusted using the acceleration sensor of the mobile device. Noise included in the size of the mouth wind is refined using a simple average filter. In order to demonstrate the superiority of the proposed technology, we show the result of interacting with contents in game and simulation in real time by applying control position and mouth-wind external force to the game.

Vision based Fast Hand Motion Recognition Method for an Untouchable User Interface of Smart Devices (스마트 기기의 비 접촉 사용자 인터페이스를 위한 비전 기반 고속 손동작 인식 기법)

  • Park, Jae Byung
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.49 no.9
    • /
    • pp.300-306
    • /
    • 2012
  • In this paper, we propose a vision based hand motion recognition method for an untouchable user interface of smart devices. First, an original color image is converted into a gray scaled image and its spacial resolution is reduced, taking the small memory and low computational power of smart devices into consideration. For robust recognition of hand motions through separation of horizontal and vertical motions, the horizontal principal area (HPA) and the vertical principal area (VPA) are defined respectively. From the difference images of the consecutively obtained images, the center of gravity (CoG) of the significantly changed pixels caused by hand motions is obtained, and the direction of hand motion is detected by defining the least mean squared line for the CoG in time. For verifying the feasibility of the proposed method, the experiments are carried out with a vision system.

A Study on Air Interface System (AIS) Using Infrared Ray (IR) Camera (적외선 카메라를 이용한 에어 인터페이스 시스템(AIS) 연구)

  • Kim, Hyo-Sung;Jung, Hyun-Ki;Kim, Byung-Gyu
    • The KIPS Transactions:PartB
    • /
    • v.18B no.3
    • /
    • pp.109-116
    • /
    • 2011
  • In this paper, we introduce non-touch style interface system technology without any touch style controlling mechanism, which is called as "Air-interface". To develop this system, we used the full reflection principle of infrared (IR) light and then user's hand is separated from the background with the obtained image at every frame. The segmented hand region at every frame is used as input data for an hand-motion recognition module, and the hand-motion recognition module performs a suitable control event that has been mapped into the specified hand-motion through verifying the hand-motion. In this paper, we introduce some developed and suggested methods for image processing and hand-motion recognition. The developed air-touch technology will be very useful for advertizement panel, entertainment presentation system, kiosk system and so many applications.

Human factors guidelines for designing anchors in the moving pictures on multimedia systems (멀티미디어 시스템의 동영상 노드를 위한 앵커의 인간공학적 설계지침)

  • Han, Sung-H.;Kim, Mi-Jeong;Kwahk, Ji-Young
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.22 no.2
    • /
    • pp.265-276
    • /
    • 1996
  • Multimedia systems present information by various media, for example, video, sound, music, animation, movie, etc., in addition to the text which has long been used for conveying the information. Among many multimedia applications, the multimedia information retrieval systems commercialized in the forms of multimedia encyclopedia CD-ROMs, benefited from various media for their ability to present information in an efficient and complete way. But using several media, on the other hand, may cause end users' confusion and furthermore, poorly designed user interface often exacerbates the situation. In this study, the multimedia systems were studied from the standpoint of usability. The conceptual framework of the user interface of the multimedia system was newly defined. And 100 initial variables for user interface design of general multimedia systems were suggested through literature survey and expert opinions based upon the framework developed. Among various application areas, the multimedia information retrieval systems were chosen for investigation, and 36 variables particularly relevant to user interface of the multimedia information retrieval systems were selected. According to the sequential research strategy, the variables that were considered to be most important were finally selected through a screening stage. A part of selected variables were verified through a human factors experiment as the first step of sequential research. Based upon the result of the experiment, guidelines for user interface design were provided. For future study, the variables remained will be Investigated and the study will expand to another application areas.

  • PDF

Study on User Interface for a Capacitive-Sensor Based Smart Device

  • Jung, Sun-IL;Kim, Young-Chul
    • Smart Media Journal
    • /
    • v.8 no.3
    • /
    • pp.47-52
    • /
    • 2019
  • In this paper, we designed HW / SW interfaces for processing the signals of capacitive sensors like Electric Potential Sensor (EPS) to detect the surrounding electric field disturbance as feature signals in motion recognition systems. We implemented a smart light control system with those interfaces. In the system, the on/off switch and brightness adjustment are controlled by hand gestures using the designed and fabricated interface circuits. PWM (Pulse Width Modulation) signals of the controller with a driver IC are used to drive the LED and to control the brightness and on/off operation. Using the hand-gesture signals obtained through EPS sensors and the interface HW/SW, we can not only construct a gesture instructing system but also accomplish the faster recognition speed by developing dedicated interface hardware including control circuitry. Finally, using the proposed hand-gesture recognition and signal processing methods, the light control module was also designed and implemented. The experimental result shows that the smart light control system can control the LED module properly by accurate motion detection and gesture classification.

Comparative Study on the Interface and Interaction for Manipulating 3D Virtual Objects in a Virtual Reality Environment (가상현실 환경에서 3D 가상객체 조작을 위한 인터페이스와 인터랙션 비교 연구)

  • Park, Kyeong-Beom;Lee, Jae Yeol
    • Korean Journal of Computational Design and Engineering
    • /
    • v.21 no.1
    • /
    • pp.20-30
    • /
    • 2016
  • Recently immersive virtual reality (VR) becomes popular due to the advanced development of I/O interfaces and related SWs for effectively constructing VR environments. In particular, natural and intuitive manipulation of 3D virtual objects is still considered as one of the most important user interaction issues. This paper presents a comparative study on the manipulation and interaction of 3D virtual objects using different interfaces and interactions in three VR environments. The comparative study includes both quantitative and qualitative aspects. Three different experimental setups are 1) typical desktop-based VR using mouse and keyboard, 2) hand gesture-supported desktop VR using a Leap Motion sensor, and 3) immersive VR by wearing an HMD with hand gesture interaction using a Leap Motion sensor. In the desktop VR with hand gestures, the Leap Motion sensor is put on the desk. On the other hand, in the immersive VR, the sensor is mounted on the HMD so that the user can manipulate virtual objects in the front of the HMD. For the quantitative analysis, a task completion time and success rate were measured. Experimental tasks require complex 3D transformation such as simultaneous 3D translation and 3D rotation. For the qualitative analysis, various factors relating to user experience such as ease of use, natural interaction, and stressfulness were evaluated. The qualitative and quantitative analyses show that the immersive VR with the natural hand gesture provides more intuitive and natural interactions, supports fast and effective performance on task completion, but causes stressful condition.

A Study on the Ubiquitous Interface Technologies (유비쿼터스 인터페이스 기술에 대한 고찰)

  • Lee, Hyeon-Jae;Oh, Chang-Heon
    • Journal of Digital Convergence
    • /
    • v.4 no.1
    • /
    • pp.31-41
    • /
    • 2006
  • This article introduces developing trends of an 'Ubiquitous Interface' as an access method for use of various network resources, such as public wireless networks and un-licensed wireless networks in ubiquitous sensor network environments, without troublesome settings or operations by users. 'Ubiquitous Interface' is a relatively wide sense meaning not only physical interface of specified device or between processors, but anything method for access USN. These 'Ubiquitous Interface' able to provide seamless services that adapt autonomously to the user's movements and changes in the state of wireless resources. Recently, strongly recommended current technologies are RFID, NFC, Multi-mode mobile terminal, UMA mobile terminal and Wearable computer as a future ubiquitous interface. These technologies are have to have flexibility and multiple physical communication channels for seamless service hand over and serve easy connection at huge USN to user. Also, they have to must have flexible software structure. Finally, through the 'Ubiquitous Interface', we will be experience of seamless communication and realize a real liberty of communication.

  • PDF

Developing Trend of an Ubiquitous Interface Technologies (유비쿼터스 인터페이스 기술의 개발 동향)

  • Lee, Hyeon-Jae;O, Chang-Heon
    • 한국디지털정책학회:학술대회논문집
    • /
    • 2005.11a
    • /
    • pp.299-311
    • /
    • 2005
  • This article introduces developing trends of an "Ubiquitous Interface" as an access method for use of various network resources, such as public wireless networks and un-licensed wireless networks in ubiquitous sensor network environments, without troublesome settings or operations by users. "Ubiquitous Interface" is include a relatively wide sense meaning not only physical interface of specified device or between processors, but anything method for access USN. These "Ubiquitous Interface" able to provide seamless services that adapt autonomously to the user's movements and changes in the state of wireless resources. Recently, strongly recommended candidates are RFID, NFC, Multi-mode mobile terminal, Wearable computer and OSGi for integrated digital home networking system as a future ubiquitous interface. These candidates are have to have flexibility and multiple physical communication channel for seamless service hand over and serve easy connection at huge USN to user. And, must have flexible software structure and multi-functional middleware. Consequently, for more enhance performance of an ubiquitous interface and developing, need more structured and integrated future plan.

  • PDF