• 제목/요약/키워드: Hand force measurement

검색결과 54건 처리시간 0.027초

The Effect of Paraffin Treatment with Exercise on Muscle Strength and Fatigue of the Hand According to the Use of Smartphone

  • Kim, Su-Hyon
    • The Journal of Korean Physical Therapy
    • /
    • 제32권4호
    • /
    • pp.198-202
    • /
    • 2020
  • Purpose: This study examined the effects of a paraffin treatment with exercise on the muscle strength and fatigue of the hand according to the use of smartphones. Methods: The measurement subjects were 30 healthy males in their 20s who were divided randomly into the control and paraffin treatment groups. A typing exercise using a smartphone was performed. The pinch grip force was measured to evaluate the muscle strength of the thumb, and muscle fatigue analysis using electromyography was performed to analyze muscle fatigue. Results: The functional changes to the arm and the fatigue of the hand through the use of a smartphone were examined to determine the effects of the paraffin treatment. The dominant hand-pinch grip force test did not show a significant difference, but the non-dominant hand-pinch grip force test showed a significant difference between the groups (p=0.030). In the dominant hand fatigue test, there was a significant difference between the groups (p=0.037). In the non-dominant hand, there was a significant difference between time (p=0.012) and the groups (p<0.001). Conclusion: The effects of paraffin intervention on the hand muscle strength and fatigue due to repeated use of the smartphone were confirmed. These results can be used as a basis for clinical use and can be a guide for the correct use of smartphones, which are essential in modern life.

힘과 온도 측정을 위한 생체모방형 촉각센서 감지부 설계 (Design of sensing .element of bio-mimetic tactile sensor for measurement force and temperature)

  • 김종호;이상현;권휴상;박연규;강대임
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2002년도 추계학술대회 논문집
    • /
    • pp.1029-1032
    • /
    • 2002
  • This paper describes a design of a tactile sensor, which can measure three components force and temperature due to thermal conductive. The bio-mimetic tactile sensor, alternative to human's finger, is comprised of four micro force sensors and four thermal sensors, and its size being 10mm$\times$10mm. Each micro force sensor has a square membrane, and its force range is 0.1N - 5N in the three-axis directions. On the other hand, the thermal sensor for temperature measurement has a heater and four temperature sensor elements. The thermal sensor is designed to keep the temperature. $36.5^{\circ}C$, constant, like human skin, and measure the temperature $0^{\circ}C$ to $50^{\circ}C$. The MEMS technology is applied to fabricate the sensing element of the tactile sensor.

  • PDF

임상가를 위한 특집 3 - 교합력 측정의 방법과 임상적 적용 (The methods for occlusal force measurement and their clinical applicatio)

  • 박지만;허성주;전윤식
    • 대한치과의사협회지
    • /
    • 제50권1호
    • /
    • pp.22-30
    • /
    • 2012
  • The methods for the occlusal force measurement have long been developed. The occlusal analyzing equipment utilizing the pressure-sensitive film (Prescale) is useful for the assessment and comparison among large group of patients. On the other hand, the apparatus which uses the grid-based sensor sheet (T-scan) can be a useful assistant for acquiring the well-balanced occlusion. The device that can process the electrical input from the strain gauge which is attached to the tooth surface can collect the dynamic data of actual masticatory force. This device has been developed for the measurement of actual mastication with the food bolus and it can be a useful method for the comparison before and after the restorative treatment. Occlusal force measurement can be applied for the analysis of therapeutic action, diagnosis of crack- tooth syndrome, temporomandibul ar disease, and idiopathic implant loosening.

Evaluation of the Contributions of Individual Finger Forces in Various Submaximal Grip Force Exertion Levels

  • Kong, Yong-Ku;Lee, Inseok;Lee, Juhee;Lee, Kyungsuk;Choi, Kyeong-Hee
    • 대한인간공학회지
    • /
    • 제35권5호
    • /
    • pp.361-370
    • /
    • 2016
  • Objective:The aim of this study is to evaluate contributions of individual finger forces associated with various levels of submaximal voluntary contraction tasks. Background: Although many researches for individual finger force have been conducted, most of the studies mainly focus on the maximal voluntary contraction. However, Information concerning individual finger forces during submaximal voluntary contraction is also very important for developing biomechanical models and for designing hand tools, work equipment, hand prostheses and robotic hands. Due to these reasons, studies on the contribution of individual finger force in submaximal grip force exertions should be fully considered. Method: A total of 60 healthy adults without any musculoskeletal disorders in the upper arms participated in this study. The young group (mean: 23.7 yrs) consisted of 30 healthy adults (15 males and 15 females), and the elderly group (mean: 75.2 yrs) was also composed of 30 participants (15 males and 15 females). A multi-Finger Force Measurement (MFFM) System developed by Kim and Kong (2008) was applied in order to measure total grip strength and individual finger forces. The participants were asked to exert a grip force attempting to minimize the difference between the target force and their exerted force for eight different target forces (5, 15, 25, 35, 45, 55, 65, and 75% MVCs). These target forces based on the maximum voluntary contraction, which were obtained from each participant, were randomly assigned in this study. Results: The contributions of middle and ring fingers to the total grip force represented an increasing trend as the target force level increased. On the other hand, the contributions of index and little fingers showed a decreasing trend as the target force level increased. In particular, Index finger exerted the largest contribution to the total grip force, followed by middle, ring and little fingers in the case of the smallest target force level (5% MVC), whereas middle finger showed the largest contribution, followed by ring, index and little fingers at the largest target force levels (65 and 75% MVCs). Conclusion: Each individual finger showed a different contribution pattern to the grip force exertion. As the target force level increase from 5 to 75% MVC, the contributions of middle and ring fingers showed an increasing trend, whereas the contributions of index and little fingers represented a decreasing trend in this study. Application: The results of this study can be useful information when designing robotic hands, hand tools and work equipment. Such information would be also useful when abnormal hand functions are evaluated.

방진 장갑 진동 전달률 측정 시스템 개발 (Development of the System for Measurement of the Vibration Transmissibility of an Anti-vibration Glove)

  • 최석현;홍석인;장한기;박태원
    • 한국소음진동공학회논문집
    • /
    • 제16권6호
    • /
    • pp.602-608
    • /
    • 2006
  • In order to evaluate performance of anti-vibration gloves, it is necessary to measure the transmitted vibration to the hand and the applied forces at the same time while gripping the vibrating handle. In the study a system was developed to measure both the vibration and the forces. The system consists of a measurement handle with eight strain gauges and two accelerometers and a PC-based system with a software for signal processing and evaluation of the hand-transmitted vibration and for control of applied forces in the pre-determined range. The handle was installed on the vibration shaker which is strong enough so as not to be affected by dynamic coupling with the hand-arm system. Whole procedure of ISO 10819 to determine the vibration transmissibility of anti-vibration gloves was programmed into the system. As an example of the application, three subjects joined the test to get vibration transmissibilities of anti-vibration gloves where each glove was tested twice a subject. Average and standard deviation of vibration transmissibility were also calculated.

Review and Evaluation of Hand-Arm Coordinate Systems for Measuring Vibration Exposure, Biodynamic Responses, and Hand Forces

  • Dong, Ren G.;Sinsel, Erik W.;Welcome, Daniel E.;Warren, Christopher;Xu, Xueyan S.;McDowell, Thomas W.;Wu, John Z.
    • Safety and Health at Work
    • /
    • 제6권3호
    • /
    • pp.159-173
    • /
    • 2015
  • The hand coordinate systems for measuring vibration exposures and biodynamic responses have been standardized, but they are not actually used in many studies. This contradicts the purpose of the standardization. The objectives of this study were to identify the major sources of this problem, and to help define or identify better coordinate systems for the standardization. This study systematically reviewed the principles and definition methods, and evaluated typical hand coordinate systems. This study confirms that, as accelerometers remain the major technology for vibration measurement, it is reasonable to standardize two types of coordinate systems: a tool-based basicentric (BC) system and an anatomically based biodynamic (BD) system. However, these coordinate systems are not well defined in the current standard. Definition of the standard BC system is confusing, and it can be interpreted differently; as a result, it has been inconsistently applied in various standards and studies. The standard hand BD system is defined using the orientation of the third metacarpal bone. It is neither convenient nor defined based on important biological or biodynamic features. This explains why it is rarely used in practice. To resolve these inconsistencies and deficiencies, we proposed a revised method for defining the realistic handle BC system and an alternative method for defining the hand BD system. A fingertip-based BD system for measuring the principal grip force is also proposed based on an important feature of the grip force confirmed in this study.

인장력 측정용 턴버클의 극한강도 및 설계방법 (Ultimate Strength and Design Method of Turn-buckle for Measuring Tensile Force)

  • 이수헌;신경재;이희두
    • 한국강구조학회 논문집
    • /
    • 제25권1호
    • /
    • pp.61-70
    • /
    • 2013
  • 인장구조물의 하중을 지지하는 인장재 사이에서 한쪽은 왼나사, 다른 쪽은 오른나사로 구성되어 장력을 조절하는 장치가 턴버클이다. 인장재의 종류 및 연결 형태에 따라 다양한 종류가 존재하지만, 보편적으로 사용되는 기존의 턴버클은 장력을 측정할 수 없는 단점을 지니고 있다. 이에 장력조절의 기능과 함께 장력측정도 가능한 측정용 턴버클을 개발하였다. 본 논문에서는 기 개발된 측정용 턴버클의 비선형해석을 통한 극한강도와 측정 신뢰성을 확인하고자 한다. 기 개발된 100kN, 200kN, 300kN급 측정한계하중을 가지는 턴버클의 극한강도를 살펴보면, 측정한계하중의 5배 이상의 극한강도를 나타내었다. 추가로 300kN 이상의 고장력을 측정하기 위한 턴버클 개발을 위하여 검토한 결과 턴버클의 경사부가 휨과 인장에 저항하기 때문에 크기가 거대해지는 경향이 나타났다. 이에 300kN급 턴버클을 병렬연결하여 설치를 하면 600kN까지 측정할 수 있을 것이라는 발상에서 병렬연결장치를 구상하여 실험을 실시하였고, 그 가능성을 실험결과로부터 확인할 수 있었다. 또한 실험적인 인장구조물을 설치하여 개발된 턴버클이 외기에 노출되었을 시에 초기 하중의 변화 및 부식의 정도를 살펴보았다.

수공구 손잡이 형태에 따른 청.노년층의 악력과 손가락 힘 및 편안함 분석 (Grip Force, Finger Force, and Comfort analyses of Young and Old People by Hand Tool Handle Shapes)

  • 공용구;손성태;김대민;정명철
    • 대한인간공학회지
    • /
    • 제28권2호
    • /
    • pp.27-34
    • /
    • 2009
  • The purpose of this study was to evaluate aging (young and old), gender (male and female), and handle shape effects on grip force, finger force, and subjective comfort. Four handle shapes of A, D, I, and V were implemented by a multi-finger force measurement (MFFM) system which was developed to measure every finger force with different grip spans. Forty young (20 males and 20 females) and forty old (20 males and 20 females) subjects participated in twelve gripping tasks and rated their comfort for all handles using a 5-point scale. Grip forces were calculating by summation of all four forces of the index, middle, ring and little fingers. Results showed that young males (283.2N) had larger gripping force than old males (235.6N), while young females (151.4N) had lower force than old females (153.6N). Young subjects exerted the largest gripping force with D-shape due to large contribution of the index and middle fingers and the smallest with A-shape; however, old subjects exerted the largest with I-shape and the smallest with V-shape due to small contribution of the ring and little fingers. As expected, the middle finger had the largest finger force and the little finger had the smallest. The fraction of contribution of index and ring fingers to grip force differed among age groups. Interestingly, young subjects provided larger index finger force than ring finger force, whereas old subjects showed that larger ring finger forces than index finger force in the griping tasks. In the relationship between performance and subjective comfort, I-shape exerting the largest grip force had less comfort than D-shape producing the second largest grip force. The findings of this study can provide guidelines on designing hand tool handle to obtain better performance as well as users' comfort.

MFFM System을 이용한 손가락 별 파지 폭들의 변화에 따른 악력 및 개인 선호도에 대한 연구 (Research of Grip Forces and Subjective Preferences for Various Individual Finger Grip Spans by using an )

  • 김대민;공용구
    • 대한인간공학회지
    • /
    • 제27권3호
    • /
    • pp.1-6
    • /
    • 2008
  • Individual finger/total grip forces, and subjective preferences for various individual finger grip spans (i.e., four fingers had identical grip spans or different grip spans) were evaluated by using an "Adjustable Multi-Finger Force Measurement (MFFM) System". In this study, three grip spans were defined as follows: a 'favorite grip span' which is the span with the highest subjective preference; a 'maximum grip span' which is the span with the highest total grip force; a 'maximum finger grip span' which is a set of four grip spans that had maximum finger grip forces associated with the index, middle, ring, and little fingers, respectively. Ten males were recruited from university population for this study. In experiment I, each participant tested the maximum grip force with five grip spans (45 to 65mm) to investigate grip forces and subjective preferences for three types of grip spans. Results showed that subjective preferences for grip spans were not coincidence with the performance of total grip forces. It was noted that the 'favorite grip span' represented the lowest total grip force, whereas the 'maximum finger grip span' showed the lowest subjective preferences. The individual finger forces and the average percentage contribution to the total finger force were also investigated in this study. The findings of this study might be valuable information for designing ergonomics hand-tools to reduce finger/hand stress as well as to improve tool users' preferences and performance.

손등피부의 운동마찰계수 획득을 위한 컨트롤 요소 및 측정에 관한 연구 (A Study on Quality Control and Measurement for Acquisition of Dynamic Friction Coefficient on Back-hand Skin)

  • 이재훈;송한욱;박연규;김종열
    • 한국한의학연구원논문집
    • /
    • 제14권3호
    • /
    • pp.103-111
    • /
    • 2008
  • Recently, skin diagnosis has been suggested as a promising tool for discrimination of Sasang Constitution, reported by examining the skin characteristics such as thickness, stiffness, slip, and skin textures like wrinkles and furrows. However, the works had a limitation in that clinical decision on the skin characteristics was made by relying upon oriental medicine doctors' subjective sense of touch. In order to objectify the skin diagnosis and claim its efficacy on the discrimination of the Sasang Constitutions, it is necessary to demonstrate its discrimination capability by providing numerical values in terms of physical quantities obtained from measurements using today's sensors and equipment technologies, which motivated this work as a priliminary step towards objectification of skin diagnosis. The skin characteristics focused in this work is the slip property of the back-hand skin that has been exploited using the dynamic friction measurement system. First, curved geometric effects of the back-hand skin on the measured lateral/vertical force signals were estimated using the artificially designed silicon coated structures, which led to a suggestion on a quality controlled experimental design based upon a empirical analysis model. Second, the experimental design thus suggested has been applied to the measurement of dynamic friction coefficients for two healthy male subjects of Taeumin (TE) and Soyangin (SY), respectively. The result shows that the dynamic friction coefficient is less for the SY subject than for the TE subject around the area of the skin used for diagnosis by the oriental medicine doctor, implying the TE subject's skin is more slippery than the SE subject's that is consistent with the oriental medicine doctor's diagnosis. Hopefully, this work can provide guidelines for obtaining quality data in friction measurement to be collected for discussion on the efficacy of the skin diagnosis and its objectification through statistical analysis.

  • PDF