• Title/Summary/Keyword: Hand Pose

Search Result 105, Processing Time 0.025 seconds

Fast Convergence GRU Model for Sign Language Recognition

  • Subramanian, Barathi;Olimov, Bekhzod;Kim, Jeonghong
    • Journal of Korea Multimedia Society
    • /
    • v.25 no.9
    • /
    • pp.1257-1265
    • /
    • 2022
  • Recognition of sign language is challenging due to the occlusion of hands, accuracy of hand gestures, and high computational costs. In recent years, deep learning techniques have made significant advances in this field. Although these methods are larger and more complex, they cannot manage long-term sequential data and lack the ability to capture useful information through efficient information processing with faster convergence. In order to overcome these challenges, we propose a word-level sign language recognition (SLR) system that combines a real-time human pose detection library with the minimized version of the gated recurrent unit (GRU) model. Each gate unit is optimized by discarding the depth-weighted reset gate in GRU cells and considering only current input. Furthermore, we use sigmoid rather than hyperbolic tangent activation in standard GRUs due to performance loss associated with the former in deeper networks. Experimental results demonstrate that our pose-based optimized GRU (Pose-OGRU) outperforms the standard GRU model in terms of prediction accuracy, convergency, and information processing capability.

Research on Human Posture Recognition System Based on The Object Detection Dataset (객체 감지 데이터 셋 기반 인체 자세 인식시스템 연구)

  • Liu, Yan;Li, Lai-Cun;Lu, Jing-Xuan;Xu, Meng;Jeong, Yang-Kwon
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.17 no.1
    • /
    • pp.111-118
    • /
    • 2022
  • In computer vision research, the two-dimensional human pose is a very extensive research direction, especially in pose tracking and behavior recognition, which has very important research significance. The acquisition of human pose targets, which is essentially the study of how to accurately identify human targets from pictures, is of great research significance and has been a hot research topic of great interest in recent years. Human pose recognition is used in artificial intelligence on the one hand and in daily life on the other. The excellent effect of pose recognition is mainly determined by the success rate and the accuracy of the recognition process, so it reflects the importance of human pose recognition in terms of recognition rate. In this human body gesture recognition, the human body is divided into 17 key points for labeling. Not only that but also the key points are segmented to ensure the accuracy of the labeling information. In the recognition design, use the comprehensive data set MS COCO for deep learning to design a neural network model to train a large number of samples, from simple step-by-step to efficient training, so that a good accuracy rate can be obtained.

Real-Time Hand Pose Tracking and Finger Action Recognition Based on 3D Hand Modeling (3차원 손 모델링 기반의 실시간 손 포즈 추적 및 손가락 동작 인식)

  • Suk, Heung-Il;Lee, Ji-Hong;Lee, Seong-Whan
    • Journal of KIISE:Software and Applications
    • /
    • v.35 no.12
    • /
    • pp.780-788
    • /
    • 2008
  • Modeling hand poses and tracking its movement are one of the challenging problems in computer vision. There are two typical approaches for the reconstruction of hand poses in 3D, depending on the number of cameras from which images are captured. One is to capture images from multiple cameras or a stereo camera. The other is to capture images from a single camera. The former approach is relatively limited, because of the environmental constraints for setting up multiple cameras. In this paper we propose a method of reconstructing 3D hand poses from a 2D input image sequence captured from a single camera by means of Belief Propagation in a graphical model and recognizing a finger clicking motion using a hidden Markov model. We define a graphical model with hidden nodes representing joints of a hand, and observable nodes with the features extracted from a 2D input image sequence. To track hand poses in 3D, we use a Belief Propagation algorithm, which provides a robust and unified framework for inference in a graphical model. From the estimated 3D hand pose we extract the information for each finger's motion, which is then fed into a hidden Markov model. To recognize natural finger actions, we consider the movements of all the fingers to recognize a single finger's action. We applied the proposed method to a virtual keypad system and the result showed a high recognition rate of 94.66% with 300 test data.

HSFE Network and Fusion Model based Dynamic Hand Gesture Recognition

  • Tai, Do Nhu;Na, In Seop;Kim, Soo Hyung
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.9
    • /
    • pp.3924-3940
    • /
    • 2020
  • Dynamic hand gesture recognition(d-HGR) plays an important role in human-computer interaction(HCI) system. With the growth of hand-pose estimation as well as 3D depth sensors, depth, and the hand-skeleton dataset is proposed to bring much research in depth and 3D hand skeleton approaches. However, it is still a challenging problem due to the low resolution, higher complexity, and self-occlusion. In this paper, we propose a hand-shape feature extraction(HSFE) network to produce robust hand-shapes. We build a hand-shape model, and hand-skeleton based on LSTM to exploit the temporal information from hand-shape and motion changes. Fusion between two models brings the best accuracy in dynamic hand gesture (DHG) dataset.

Hand Pose Recognition Using Orientation Histogram Data Ill Hand Pose Space (파라메트릭 손 포즈 공간에서 방향성 히스토그램 데이터를 이용한 손 포즈 인식)

  • 김종민;위승정;양환석;이용기
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2004.04b
    • /
    • pp.787-789
    • /
    • 2004
  • 본 논문에서는 별도의 센서를 부착하지 않고 영상만을 이용하여 실시간으로 손 형상을 인식하는 알고리즘에 대해 기술한다. 손은 형상이 매우 복잡하기 때문에 2차원 형상의 불변량에 해당하는 에지의 방향성 히스토그램을 이용하여 인식을 행한다. 이 방법은 복잡한 배경에서 색상정보를 이용하여 손 영역이 정확히 추출되면 계산량이 적고 조명변화에 덜 민감하기 때문에 실시간 손 형상 인식에 적합하다. 본 논문에서는 손의 형상제시 방향이 변하는 경우에도 인식을 가능하게 하기 위해 주성분 분석법을 사용하여 인식오차를 줄이는 방법을 기술한다. 이 방법을 사용함으로써 손 형상이 3차원적으로 회전에 의해 변하는 경우도 인식가능하게 되었다. 실험부분에서 제안하는 방법을 이용하여 가정용 가전제품이나 게임을 제어하는 실시간 휴먼 인터페이스 시스템 제작기술로 활용될 수 있음을 보인다.

  • PDF

An Optimized Hand Pose Estimation in Wearable Wrist-Attached RGB Camera (손목 부착형 웨어러블 RGB 카메라에 최적화된 손 자세 추정기술)

  • Lee, Jeongho;Choi, Changhwan;Min, Jaeeun;Choi, Younggeun;Choi, Sang-Il
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2022.07a
    • /
    • pp.31-34
    • /
    • 2022
  • 본 논문에서는 손목 부착형 웨어러블(Wearable) RGB 카메라를 통해 취득한 손 이미지에 최적화된 손 자세 추정모델과 학습방법을 제안한다. 최근 의료분야에서 활발하게 인공지능이 사용되고 있으며 그 중 이미지 인식을 중심으로 하는 진단 분야[1]가 괄목할만한 성과를 보인다. 본 연구에서는 웨어러블 카메라를 통해 얻은 손 자세를 활용하여 질병 진단에 적용할 계획이다. 또한, 본 연구수행을 통해 질병진단에 필요한 데이터 측정비용 절감 및 개인 맞춤형 진단서비스를 제공할 것으로 기대된다.

  • PDF

2D and 3D Hand Pose Estimation Based on Skip Connection Form (스킵 연결 형태 기반의 손 관절 2D 및 3D 검출 기법)

  • Ku, Jong-Hoe;Kim, Mi-Kyung;Cha, Eui-Young
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.24 no.12
    • /
    • pp.1574-1580
    • /
    • 2020
  • Traditional pose estimation methods include using special devices or images through image processing. The disadvantage of using a device is that the environment in which the device can be used is limited and costly. The use of cameras and image processing has the advantage of reducing environmental constraints and costs, but the performance is lower. CNN(Convolutional Neural Networks) were studied for pose estimation just using only camera without these disadvantage. Various techniques were proposed to increase cognitive performance. In this paper, the effect of the skip connection on the network was experimented by using various skip connections on the joint recognition of the hand. Experiments have confirmed that the presence of additional skip connections other than the basic skip connections has a better effect on performance, but the network with downward skip connections is the best performance.

Automatic Registration of Two Parts using Robot with Multiple 3D Sensor Systems

  • Ha, Jong-Eun
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.4
    • /
    • pp.1830-1835
    • /
    • 2015
  • In this paper, we propose an algorithm for the automatic registration of two rigid parts using multiple 3D sensor systems on a robot. Four sets of structured laser stripe system consisted of a camera and a visible laser stripe is used for the acquisition of 3D information. Detailed procedures including extrinsic calibration among four 3D sensor systems and hand/eye calibration of 3D sensing system on robot arm are presented. We find a best pose using search-based pose estimation algorithm where cost function is proposed by reflecting geometric constraints between sensor systems and target objects. A pose with minimum gap and height difference is found by greedy search. Experimental result using demo system shows the robustness and feasibility of the proposed algorithm.

MPEG-U-based Advanced User Interaction Interface Using Hand Posture Recognition

  • Han, Gukhee;Choi, Haechul
    • IEIE Transactions on Smart Processing and Computing
    • /
    • v.5 no.4
    • /
    • pp.267-273
    • /
    • 2016
  • Hand posture recognition is an important technique to enable a natural and familiar interface in the human-computer interaction (HCI) field. This paper introduces a hand posture recognition method using a depth camera. Moreover, the hand posture recognition method is incorporated with the Moving Picture Experts Group Rich Media User Interface (MPEG-U) Advanced User Interaction (AUI) Interface (MPEG-U part 2), which can provide a natural interface on a variety of devices. The proposed method initially detects positions and lengths of all fingers opened, and then recognizes the hand posture from the pose of one or two hands, as well as the number of fingers folded when a user presents a gesture representing a pattern in the AUI data format specified in MPEG-U part 2. The AUI interface represents a user's hand posture in the compliant MPEG-U schema structure. Experimental results demonstrate the performance of the hand posture recognition system and verified that the AUI interface is compatible with the MPEG-U standard.

Hand Segmentation Using Depth Information and Adaptive Threshold by Histogram Analysis with color Clustering

  • Fayya, Rabia;Rhee, Eun Joo
    • Journal of Korea Multimedia Society
    • /
    • v.17 no.5
    • /
    • pp.547-555
    • /
    • 2014
  • This paper presents a method for hand segmentation using depth information, and adaptive threshold by means of histogram analysis and color clustering in HSV color model. We consider hand area as a nearer object to the camera than background on depth information. And the threshold of hand color is adaptively determined by clustering using the matching of color values on the input image with one of the regions of hue histogram. Experimental results demonstrate 95% accuracy rate. Thus, we confirmed that the proposed method is effective for hand segmentation in variations of hand color, scale, rotation, pose, different lightning conditions and any colored background.