• Title/Summary/Keyword: Hancheon reservoir

Search Result 4, Processing Time 0.02 seconds

An Evaluation of the Flood Control Effect according to the Hancheon Reservoir Operation (한천저류지 운영에 따른 홍수조절효과 평가)

  • Moon, Duk Chul;Jung, Kwan Sue;Park, Won Bae;Kim, Yong Cheol
    • Journal of Korea Water Resources Association
    • /
    • v.47 no.2
    • /
    • pp.107-117
    • /
    • 2014
  • Hancheon reservoir, which is located upstream of Jeju city, has been built for flood mitigation after Typhoon Nari, 2007. To verify flood mitigating effect of the this reservoir on the downstream area, runoff analysis based on the measured data (two stream discharge monitoring stations and inflow data to the reservoir) is carried out during torrential rain followed by typhoon Dainmu, 2010. The stream water level was recorded as 3.14 m for the peak at the down gradient station. The stream water level under the assumption of absence of Hancheon reservoir is calculated as 4.16 m using the estimated rating curve, stream water propagation velocity, and the bypassed volume of water to the reservoir. This result shows that clear effect of reservoir operation which is capable of mitigating peak discharge in the downstream area.

Modeling Artificial Groundwater Recharge in the Hancheon Drainage Area, Jeju island, Korea (제주도 한천유역 지하수 모델개발을 통한 인공함양 평가)

  • Oh, Se-Hyoung;Kim, Yong-Cheol;Koo, Min-Ho
    • Journal of Soil and Groundwater Environment
    • /
    • v.16 no.6
    • /
    • pp.34-45
    • /
    • 2011
  • For the Hancheon drainage area in Jeju island, a groundwater flow model using Visual MODFLOW was developed to simulate artificial recharge through injection wells installed in the Hancheon reservoir. The model was used to analyze changes of the groundwater level and the water budget due to the artificial recharge. The model assumed that $2{\times}10^6m^3$ of storm water would recharge annually through the injection wells during the rainy season. The transient simulation results showed that the water level rose by 39.6 m at the nearest monitoring well and by 0.26 m at the well located 7 km downstream from the injection wells demonstrating a large extent of the affected area by the artificial recharge. It also shown that, at the time when the recharge ended in the 5th year, the water level increased by 81 m at the artificial reservoir and the radius of influence was about 2.1 km downstream toward the coast. The residence time of recharged groundwater was estimated to be no less than 5 years. The model also illustrated that 15 years of artificial recharge could increase the average linear velocity of groundwater up to 1540 m/yr, which showed 100 m/yr higher than before. Increase of groundwater storage due to artificial recharge was calculated to be $2.4{\times}10^6$ and $4.3{\times}10^6m^3$ at the end of the 5th and 10th years of artificial recharge, respectively. The rate of storage increase was gradually diminished afterwards, and storage increase of $5.0{\times}10^6m^3$ was retained after 15 years of artificial recharge. Conclusively, the artificial recharge system could augment $5.0{\times}10^6m^3$ of additional groundwater resources in the Hancheon area.

Analysis of Flood-Control Effects in Hancheon Reservoir using Nays2d Flood (Nays2d Flood 모형을 활용한 한천 저류지의 홍수조절효과 분석)

  • Son, Geunsoo;Kim, Dongsu;Kim, Seojun
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2018.05a
    • /
    • pp.222-222
    • /
    • 2018
  • 최근 이상기후로 인한 집중호우의 증가로 인해 하천의 홍수방어능력을 초과하는 침수피해가 급증하고 있다. 특히, 제주도는 태풍의 길목에 위치하고 있는 강우량이 약 2,061mm에 달하는 우리나라 최다우 지역으로 평시에는 건천인 상태의 하천이 집중호우 시 급격한 유출 발생으로 하류도심지역에 하천 범람으로 인한 많은 피해가 발생하고 있다. 제주도에서는 이를 방어하기 위해 하도 내 첨두 홍수량을 조절하여 하류지역의 피해를 경감시키기 위한 구조물인 저류지를 상류에 설치하여 운영하고 있다. 하지만 저류지의 건설을 통한 실제 홍수조절효과에 대한 정량적인 분석은 미흡한 실정이다. 이에 본 연구에서는 태풍 '나리' 때 가장 큰 피해가 발생한 한천의 한천1, 2 저류지를 대상지역으로 선정하여 2차원 수치모형인 Nays2d Flood 모형을 활용한 한천 저류지의 운영에 따른 홍수조절효과를 분석하였다. 지형자료는 드론을 활용하여 측정된 약 7cm 간격의 정밀한 하상 측량자료를 사용하였고, 태풍 '차바' 발생 시 계측된 저류지내의 수심 측정 센서 자료를 활용하여 모형의 검보정을 수행하였다. 보정된 모의결과를 활용하여 태풍 '차바' 때의 저류지가 활용되는 모습을 재현할 수 있었고, 이를 통해서 현재 설치된 저류지의 구조적인 문제점과 운영방법에 따른 홍수조절효과 개선방안을 제시하고자 하였다. 또한 저류지 설계 시 사용된 100년 빈도의 설계 홍수량을 바탕으로 모의를 수행하여, 기존에 제시된 한천저류지의 홍수 저감량과의 비교를 통해서 실제 저류지의 운영에 따른 홍수조절효과를 정량적으로 분석하였다.

  • PDF

Empirical Formula of Delay Time for Groundwater Recharge in the Representative Watersheds, Jeju Island (제주 대표유역에 대한 함양지체시간의 경험식)

  • Kim, Nam Won;Na, Hanna;Chung, Il-Moon;Kim, Youn Jung
    • Journal of Korea Water Resources Association
    • /
    • v.47 no.9
    • /
    • pp.743-752
    • /
    • 2014
  • Delay time for groundwater recharge means the travel time from the bottom of soil layer to groundwater through vadose zone after infiltration from rainfall. As it is difficult to measure delay time, we suggested an empirical formula which is derived by using linear regression between altitude and delay time. For the regression analysis, 4 major gauging watersheds were chosen (Hancheon, Kangjeongcheon, Oedocheon, Cheonmicheon) with 18 measured groundwater level stations. To verify this empirical formula, derived equation from linear reservoir theory was applied to compute delay time and to compare estimated amounts of groundwater recharge using both methods. The result showed good agreement. Furthermore, if derived empirical formula would be linked with SWAT model, the spatial time delay effect in the watershed could be reflected properly.