• Title/Summary/Keyword: Hammett constant

Search Result 77, Processing Time 0.039 seconds

Kinetic Studies for the Reactions of Pyridine with Benzoylchlorides under High Pressure and High Vacuum (고압 및 고진공에서의 피리딘과 벤조일클로라이드류의 반응에 관한 속도론적 연구)

  • Kim, Se-Kyong
    • Journal of the Korean Chemical Society
    • /
    • v.48 no.3
    • /
    • pp.254-260
    • /
    • 2004
  • The reaction rates of para-substituted benzoyl chlorides ($p-CH_3$, p-H, $p-NO_2$) with pyridine have been measured employing the conductometry method in acetonitrile. The pseudo first-order and second-order rate constants were determined at various pressures and temperatures. The activation parameters (${\Delta}V{\ddagger},\;{\Delta}{\beta}{\ddagger},\;{\Delta}H{\ddagger},\;{\Delta}S{\ddagger},\;{\Delta}G{\ddagger}$) and the Hammett ${\rho}$-values are determined from the values of rate constant. The values of ${\Delta}V{\ddagger},\;{\Delta}{\beta}{\ddagger}\;and\;{\Delta}S{\ddagger}$ are all negative. The Hammett ${\rho}$-values are positive for the substrate (${\rho}_Y$) over the given pressure range. The results of kinetic studies, for the pressure and substituent changes, show that these reactions are proceeded by a typical $SN_2$reaction mechanism and its bond formation is favored with elevating pressure.

Determination of inclusion complex formation constants for the β-CD and [Cu(Dien)(sub-Py)]2+ ion by the spectrophotometric methods (분광 광도법에 의한 β-CD와 [Cu(Dien)(sub-Py)]2+이온간의 복합체 형성 상수 결정)

  • Kim, Chang Suk;Oh, Ju Young
    • Analytical Science and Technology
    • /
    • v.20 no.5
    • /
    • pp.406-412
    • /
    • 2007
  • The formation of inclusion complexes between ${\beta}$-cyclodextrin and diethylenetriamine substituted-pyridine copper(II) perchlorate; [Cu(dien)(sub-py)] $(ClO_4)_2$, were studied by spectrophotometric methods. On account of charge-transfer band(MLCT) and $^2T_2{\rightarrow}^2E$, the two high peaks were observed as an inclusion complex for the [${\beta}$-CD]$[Cu(dien)(p-Cl-py)]^{2+}$ in the ultraviolet region of the spectrum. The ${\beta}$-CD and $[Cu(dien)(sub-py)]^{2+}$ ion formed a 1:1 complex, and the formation constants were decreased with the increasing temperatures, due to weak binding energy between ${\beta}$-CD and $[Cu(dien)(sub-py)]^{2+}$ ion. This reaction was controlled by enthalpy. In a correlation of the Hammett substituent constants and formation constants for the reaction, formation constants were increased by strong binding energy in the inclusion complexes when electron donating groups were substituted in pyridine ring.

Significant Substituent Effects on Pyridinolysis of Aryl Ethyl Chlorophosphates in Acetonitrile

  • Adhikary, Keshab Kumar;Lee, Hai Whang
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.5
    • /
    • pp.1460-1464
    • /
    • 2014
  • The substituent effects on the pyridinolysis (XC5H4N) of Y-aryl ethyl chlorophosphates are investigated in acetonitrile at $35.0^{\circ}C$. The two strong ${\pi}$-acceptor substituents, X = 4-Ac and 4-CN in the X-pyridines, exhibit large positive deviations from the Hammett plots but little positive deviations from the Br$\ddot{o}$nsted plots. The substituent Y effects on the rates are really significant and the Hammett plots for substituent Y variations in the substrates invariably change from biphasic concave downwards via isokinetic at X = H to biphasic concave upwards with a break point at Y = 3-Me as the pyridine becomes less basic. These are interpreted to indicate a mechanistic change at the break point from a stepwise mechanism with a rate-limiting bond formation (${\rho}_{XY}$ = -6.26) for Y = (4-MeO, 4-Me, 3-Me) to with a rate-limiting leaving group expulsion from the intermediate (${\rho}_{XY}$ = +5.47) for Y = (4-Me, H, 3-MeO). The exceptionally large magnitudes of ${\rho}_{XY}$ values imply frontside nucleophilic attack transition state.

Kinetics and Mechanism of the Pyridinolysis of Aryl Phenyl Chlorothiophosphates in Acetonitrile

  • Hoque, Md. Ehtesham Ul;Dey, Shuchismita;Kim, Chan-Kyung;Lee, Hai-Whang
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.4
    • /
    • pp.1138-1142
    • /
    • 2011
  • Kinetic studies for the reactions of Y-aryl phenyl chlorothiophosphates with X-pyridines have been carried out in acetonitrile at $35.0^{\circ}C$. The Hammett and Bronsted plots for substituent X variations in the nucleophiles are biphasic concave upwards with a break point at X = 3-Ph, while the Hammett plots for substituent Y variations in the substrates are biphasic concave downwards (and partially upwards) with a break point at Y = H. The signs and magnitudes of the cross-interaction constant (${\rho}_{XY}$) are strongly dependent upon the nature of substituents, X and Y. The proposed mechanism is a stepwise process with a rate-limiting step change from bond breaking with the weaker electrophiles to bond formation with the stronger eletrophiles. The nonlinear free energy correlations of biphasic concave upward plots for substituent X variations in the nucleophiles are rationalized by a change in the attacking direction of the nucleophile from a backside with less basic pyridines to a frontside attack with more basic pyridines.

Nucleophilic Substitution Reactions of α-Bromoacetanilides with Benzylamines

  • Adhikary, Keshab Kumar;Kim, Chan-Kyung;Lee, Bon-Su;Lee, Hai-Whang
    • Bulletin of the Korean Chemical Society
    • /
    • v.29 no.1
    • /
    • pp.191-196
    • /
    • 2008
  • Kinetic studies of the reactions of a-bromoacetanilides [YC6H4NHC(=O)CH2Br] with substituted benzylamines (XC6H4CH2NH2) have been carried out in dimethyl sulfoxide at 35.0 oC. The Hammett plots for substituent (Y) variations in the substrate (log kN vs. sY) are biphasic concave upwards/downwards with breaks at Y = 4-Cl (sY = 0.23). The Hammett coefficients rY and the cross-interaction constant rXY (= +0.16) are positive for sY 0.23, while the rY values are positive/negative [rY > 0 for X = (4-MeO and 4-Me) and rY < 0 for X = (H, 4-Cl and 3-Cl)] and the rXY (= -1.51) value is negative for sY ³ 0.23. Based on these and other results, the benzylaminolyses of a-bromoacetanilides are proposed to proceed through rate-limiting expulsion of the bromide leaving group from a zwitterionic tetrahedral intermediate, T, with a bridged transition state for s Y 0.23, while the reaction proceeds through concerted mechanism with an enolate-like TS in which the nucleophile attacks the a-carbon for s Y ³ 0.23.

Nucleophilic Displacement at Sulfur Center (XI). Reaction of Naphthalenesulfonyl Chlorides with Anilines (황의 친핵성 치환반응 (제11보). 염화나프탈렌술포닐과 아닐린과의 반응)

  • Lee Ik Chon;Uhm Tae Seop;Lee Euk Suk
    • Journal of the Korean Chemical Society
    • /
    • v.22 no.5
    • /
    • pp.281-288
    • /
    • 1978
  • Pseudo-first order rate constants $k_{obs}$ were determined for the reactions of naphthalenesulfonyl chlorides (1-NSC and 2-NSC) and anilines. The second order rate constant $k_2$ and third order catalytic $k_3$ were then determined from $k_{obs}$. For 1-NSC peri-hydrogen effect was observed. The large Brønsted ${\beta}$ and large negative slopes ${\rho}$ for the Hammett plots were obtained. These results with the unsually low values of activation parameters were consistent with the $S_AN$-elimination mechanism, but these can be equally well interpreted with the associative $S_N2$mechanism.

  • PDF

Kinetics and Mechanism of the Pyridinolysis of O,O-Dimethyl S-Aryl Phosphorothioates in Dimethyl Sulfoxide

  • Barai, Hasi Rani;Lee, Hai-Whang
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.7
    • /
    • pp.2339-2344
    • /
    • 2011
  • Kinetic studies for the reactions of O,O-dimethyl Z-S-aryl phosphorothioates with X-pyridines have been carried out in dimethyl sulfoxide at 85.0 $^{\circ}C$. The Hammett and Br$\"{o}$nsted plots for substituent X variations in the nucleophiles are biphasic concave upwards with a break point at X = H, while those for substituent Z variations in the leaving groups are linear. The negative sign of the cross-interaction constant (${\rho}_{XZ}$) implies that the reaction proceeds through a concerted mechanism for both the strongly and weakly basic pyridines. The magnitude of ${\rho}_{XZ}$ (= -0.35) for the strongly basic pyridines is greater than that (${\rho}_{XZ}$ = -0.15) for the weakly basic pyridines, indicating a change of the nucleophilic attacking direction from frontside for the strongly basic pyridines to backside for the weakly basic pyridines. The early transition state is proposed on the basis of the absence of positive deviations from both the Hammett and Br$\"{o}$nsted plots for the strong ${\pi}$-acceptor, X = 4-Ac, and small values of ${\rho}_{XZ}$ and ${\beta}_X$.

Kinetics and Mechanism of the Benzylaminolysis of O,O-Dimethyl S-Aryl Phosphorothioates in Dimethyl Sulfoxide

  • Adhikary, Keshab Kumar;Barai, Hasi Rani;Lee, Hai-Whang
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.12
    • /
    • pp.4304-4308
    • /
    • 2011
  • Kinetic studies of the reactions of O,O-dimethyl Z-S-aryl phosphorothioates with X-benzylamines have been carried out in dimethyl sulfoxide at $85.0^{\circ}C$. The Hammett (log $k_2$ vs ${\sigma}_X$) and Br$\ddot{o}$nsted [log $k_2$ vs $pK_a$(X)] plots for substituent X variations in the nucleophiles are discrete with a break region between 4-Me and H, while the Hammett plots (log $k_2$ vs ${\sigma}_Z$) for substituent Z variations in the leaving groups are linear. The sign of the cross-interaction constant (${\rho}_{XZ}$) is positive for both the strongly and weakly basic nucleophiles. Greater magnitude of ${\rho}_{XZ}$ (= 2.54) value is observed with the weakly basic nucleophiles compared to with the strongly basic nucleophiles (${\rho}_{XZ}$ = 0.17). The deuterium kinetic isotope effects ($k_H/k_D$) involving deuterated benzylamines [$XC_6H_4CH_2ND_2$] are primary normal ($k_H/k_D$ > 1). The proposed mechanism is a stepwise with a rate-limiting leaving group expulsion from the intermediate involving a frontside nucleophilic attack with a hydrogen bonded, four-center-type transition state for both the strongly and weakly basic nucleophiles.

Kinetics Studies on the Mechanism of Hydrolysis of S-Phenyl-S-vinyl-N-p-tosylsulfilimine Derivatives

  • Pyun, Sang-Yong;Kim, Tae-Rin;Lee, Chong-Ryoul;Kim, Whan-Gi
    • Bulletin of the Korean Chemical Society
    • /
    • v.24 no.3
    • /
    • pp.306-310
    • /
    • 2003
  • Hydrolysis reactions of S-phenyl-S-vinyl-N-p-tosylsulfilimine (VSI) and its derivatives at various pH have been investigated kinetically. The hydrolysis reactions produced phenylvinylsulfoxide and p-toluene sulfonamide as the products. The reactions are first order and Hammett ρ values for pH 1.0, 6.0, and 11.0 are 0.82, 0.45, and 0.57, respectively. This reaction is not catalyzed by general base. The plot of k vs pH shows that there are three different regions of the rate constants $(k_t)$ in the profile.; At pH < 2 and pH > 10, the rate constants are directly proportional to the concentrations of hydronium and hydroxide ion catalyzed reactions, respectively. The rate constant remains nearly the same at 2 < pH < 10. On the bases of these results, the plausible hydrolysis mechanism and a rate equation have been proposed: At pH < 2.0, the reaction proceeds via the addition of water molecule to sulfur after protonation at the nitrogen atom of the sulfilimine, whereas at pH > 10.0, the reaction proceeds by the addition of hydroxide ion to sulfur directly. In the range of pH 2.0-10.0, the addition of water to sulfur of sulfilimine appears to be the rate controlling step.

Acidities of Benzyltetrahydrothiophenium Halides in Water. A Simple Method of Estimation

  • 조봉래;김용관;한만소;오광진
    • Bulletin of the Korean Chemical Society
    • /
    • v.16 no.12
    • /
    • pp.1218-1222
    • /
    • 1995
  • The pKa values of benzyltetrahydrothiophenium halides 1a-f in water have been estimated by measuring the absorbances of the solution in aqueous hydroxide ion solution. Assuming that the ratios of the activity coefficients remains close to unity, the absorbance of the solution can be expressed as A/[SH]o=(εSH+εS-K[OH-])/(1+K[OH-]), where A, [SH]o, K, εSH, and εS- are the absorbance of solution, the initial concentration of 1a-f, the equilibrium constant, and the extinction coefficients for SH and S-, respectively. The εS- and K values that best fit with this equation were calculated by a nonlinear regression analysis with a large number of absorbance data determined at different [OH-] and [SH]o. The pKa values of the SH were then calculated with the relationship Ka=-log K+14. The validity of this method has been demonstrated by the excellent agreements between the experimental and literature pKa values of three organic acids. The pKa values of 1a-f estimated by this method are in the range of 12.5-15.3 and correlate well with the Hammett equation. The large negative deviation for the pKa values of 1e and 1f from the Hammett plot has been attributed to the extra hydrogen bonding between the phenyl group and water molecules attracted by the hydrophilic substituents.