• Title/Summary/Keyword: Hamiltonian Approach (HA)

Search Result 8, Processing Time 0.015 seconds

Analytical study on non-natural vibration equations

  • Bayat, Mahmoud;Pakar, Iman
    • Steel and Composite Structures
    • /
    • v.24 no.6
    • /
    • pp.671-677
    • /
    • 2017
  • In this paper, two powerful analytical methods called Variational Approach (VA) and Hamiltonian Approach (HA) are used to solve high nonlinear non-Natural vibration problems. The presented approaches are works well for the whole range of amplitude of the oscillator. The first iteration of the approaches leads us to high accurate solution. Numerical results are also presented by using Runge-Kutta's [RK] algorithm. The full comparison between the presented approaches and the numerical ones are shown in figures. The effects of important parameters on the response of nonlinear behavior of the systems are studied completely. Finally, the results show that the Variational Approach and Hamiltonian approach are strong enough to prepare easy analytical solutions.

Accurate analytical solution for nonlinear free vibration of beams

  • Bayat, M.;Pakar, I.
    • Structural Engineering and Mechanics
    • /
    • v.43 no.3
    • /
    • pp.337-347
    • /
    • 2012
  • In this study, Hamiltonian Approach (HA) is applied to analysis the nonlinear free vibration of beams. Two well-known examples are illustrated to show the efficiency of this method. One of them deals with the Nonlinear vibration of an electrostatically actuated microbeam and the other is the nonlinear vibrations of tapered beams. This new approach prepares us to achieve the beam's natural frequencies and mode shapes easily and a rapidly convergent sequence is obtained during the solution. The effects of the small parameters on the frequency of the beams are discussed. Some comparisons are conducted between the results obtained by the Hamiltonian Approach (HA) and numerical solutions using to illustrate the effectiveness and convenience of the proposed methods.

Structural health monitoring through nonlinear frequency-based approaches for conservative vibratory systems

  • Bayat, M.;Pakar, I.;Ahmadi, H.R.;Cao, M.;Alavi, A.H.
    • Structural Engineering and Mechanics
    • /
    • v.73 no.3
    • /
    • pp.331-337
    • /
    • 2020
  • This paper proposes a new approximate analytical solution for highly nonlinear vibration of mechanical systems called Hamiltonian Approach (HA) that can be widely use for structural health monitoring systems. The complete procedure of the HA approach is studied, and the precise application of the presented approach is surveyed by two familiar nonlinear partial differential problems. The nonlinear frequency of the considered systems is obtained. The results of the HA are verified with the numerical solution using Runge-Kutta's [RK] algorithm. It is established the only one iteration of the HA leads us to the high accurateness of the solution.

An accurate novel method for solving nonlinear mechanical systems

  • Bayat, Mahdi;Pakar, Iman;Bayat, Mahmoud
    • Structural Engineering and Mechanics
    • /
    • v.51 no.3
    • /
    • pp.519-530
    • /
    • 2014
  • This paper attempts to investigate the nonlinear dynamic analysis of strong nonlinear problems by proposing a new analytical method called Hamiltonian Approach (HA). Two different cases are studied to show the accuracy and efficiency of the method. This approach prepares us to obtain the nonlinear frequency of the nonlinear systems with the first order of the solution with a high accuracy. Finally, to verify the results we present some comparisons between the results of Hamiltonian approach and numerical solutions using Runge-Kutta's [RK] algorithm. This approach has a powerful concept and the high accuracy, so it can be apply to any conservative nonlinear problems without any limitations.

On the large amplitude free vibrations of axially loaded Euler-Bernoulli beams

  • Bayat, Mahmoud;Pakar, Iman;Bayat, Mahdi
    • Steel and Composite Structures
    • /
    • v.14 no.1
    • /
    • pp.73-83
    • /
    • 2013
  • In this paper Hamiltonian Approach (HA) have been used to analysis the nonlinear free vibration of Simply-Supported (S-S) and for the Clamped-Clamped (C-C) Euler-Bernoulli beams fixed at one end subjected to the axial loads. First we used Galerkin's method to obtain an ordinary differential equation from the governing nonlinear partial differential equation. The effect of different parameter such as variation of amplitude to the obtained on the non-linear frequency is considered. Comparison of HA with Runge-Kutta 4th leads to highly accurate solutions. It is predicted that Hamiltonian Approach can be applied easily for nonlinear problems in engineering.

Nonlinear vibration and stability of FG nanotubes conveying fluid via nonlocal strain gradient theory

  • Dang, Van-Hieu;Sedighi, Hamid M.;Chan, Do Quang;Civalek, Omer;Abouelregal, Ahmed E.
    • Structural Engineering and Mechanics
    • /
    • v.78 no.1
    • /
    • pp.103-116
    • /
    • 2021
  • In this work, a model of a functionally graded (FG) nanotube conveying fluid embedded in an elastic medium is developed based on the nonlocal strain gradient theory (NSGT) in conjunction with Euler-Bernoulli beam theory (EBT). The main objective of this research is to investigate the nonlinear vibration and stability analysis of fluid-conveying nanotubes. The governing equations of motion are derived by means of Hamiltonian principle. The analytical expressions of nonlinear frequencies and critical flow velocities for two different types of boundary conditions including pinned-pinned (P-P) and clamped-clamped (C-C) conditions are obtained by employing Galerkin method as well as Hamiltonian Approach (HA). Comparison of the obtained results with the published works show the acceptable accuracy of the current solutions. The effects of the power-law index, the nonlocal and material length scale parameters and the elastic medium on the stability and nonlinear responses of FG nanotubes are thoroughly investigated and discussed.

Nonlinear vibration of unsymmetrical laminated composite beam on elastic foundation

  • Pakar, I.;Bayat, M.;Cveticanin, L.
    • Steel and Composite Structures
    • /
    • v.26 no.4
    • /
    • pp.453-461
    • /
    • 2018
  • In this paper, nonlinear vibrations of the unsymmetrical laminated composite beam (LCB) on a nonlinear elastic foundation are studied. The governing equation of the problem is derived by using Galerkin method. Two different end conditions are considered: the simple-simple and the clamped-clamped one. The Hamiltonian Approach (HA) method is adopted and applied for solving of the equation of motion. The advantage of the suggested method is that it does not need any linearization of the problem and the obtained approximate solution has a high accuracy. The method is used for frequency calculation. The frequency of the nonlinear system is compared with the frequency of the linear system. The influence of the parameters of the foundation nonlinearity on the frequency of vibration is considered. The differential equation of vibration is solved also numerically. The analytical and numerical results are compared and is concluded that the difference is negligible. In the paper the new method for error estimation of the analytical solution in comparison to the exact one is developed. The method is based on comparison of the calculation energy and the exact energy of the system. For certain numerical data the accuracy of the approximate frequency of vibration is determined by applying of the suggested method of error estimation. Finally, it has been indicated that the proposed Hamiltonian Approach gives enough accurate result.

Accurate analytical solutions for nonlinear oscillators with discontinuous

  • Bayat, Mahdi;Bayat, Mahmoud;Pakar, Iman
    • Structural Engineering and Mechanics
    • /
    • v.51 no.2
    • /
    • pp.349-360
    • /
    • 2014
  • In this study, three approximate analytical methods have been proposed to prepare an accurate analytical solution for nonlinear oscillators with fractional potential. The basic idea of the approaches and their applications to nonlinear discontinuous equations have been completely presented and discussed. Some patterns are also presented to show the accuracy of the methods. Comparisons between Energy Balance Method (EBM), Variational Iteration Method (VIM) and Hamiltonian Approach (HA) shows that the proposed approaches are very close together and could be easily extend to conservative nonlinear vibrations.