• Title/Summary/Keyword: Haman mineralized area

Search Result 3, Processing Time 0.016 seconds

Geochemical Environments of Copper-bearing Ore Mineralization in the Haman Mineralized Area (함안지역 함 동 광화작용의 지화학적 환경)

  • Choi, Sang-Hoon
    • Economic and Environmental Geology
    • /
    • v.42 no.1
    • /
    • pp.1-8
    • /
    • 2009
  • The Haman mineralized area is located within the Cretaceous Gyeongsang Basin along the southeastern part of the Korean peninsula. Almost all occurrences in the Haman area are representative of copper-bearing polymetallic hydrothermal vein-type mineralization. Within the area are a number of fissure-filling hydrothermal veins which contain tourmaline, quartz and carbonates with Fe-oxide, base-metal sulfide and sulfosalt minerals. The Gunbuk, Jeilgunbuk and Haman mines are each located on such veins. The ore and gangue mineral paragenesis can be divided into three distinct stages: Stage I, tourmaline + quartz + Fe-Cu ore mineralization; Stage II, quartz + sulfides + sulfosalts + carbonates; Stage III, barren calcite. Equilibrium thermodynamic data combined with mineral paragenesis indicate that copper minerals precipitated mainly within a temperature range of $350^{\circ}C$ to $250^{\circ}C$. During early mineralization at $350^{\circ}C$, significant amounts of copper ($10^3$ to $10^2\;ppm$) could be dissolved in weakly acid NaCl solutions. For late mineralization at $250^{\circ}C$, about $10^0$ to $10^{-1}\;ppm$ copper could be dissolved. Equilibrium thermodynamic interpretation indicates that the copper in the Haman-Gunbuk systems could have been transported as a chloride complex and the copper precipitation occurred as a result of cooling accompanied by changes in the geochemical environments ($fs_2$, $fo_2$, pH, etc.) resulting in decrease of solubility of copper chloride complexes.

Copper Mineralization in the Haman-Gunbuk Area, Gyeongsangnamdo-Province: Fluid Inclusion and Stable Isotope Study (경상남도 함안-군북지역의 동광화작용: 유체포유물 및 안정동위원소 연구)

  • 허철호;윤성택;최상훈;최선규;소칠섭
    • Economic and Environmental Geology
    • /
    • v.36 no.2
    • /
    • pp.75-87
    • /
    • 2003
  • The Haman-Gunbuk mineralized area is located within the Cretaceous Gyeongsang Basin along the southeastern part of the Korean peninsula. Major ore minerals, magnetite, scheelite, molybdenite and chalcopyrite, together with base-metal sulfides and minor sulfosalts, occur in fissure-filling tourmaline, quartz and carbonates veins contained within Cretaceous sedimentary and volcanic rocks anu/or granodiorite (118{\pm}$3.0 Ma). The ore and gangue mineral paragenesis can be divided into three distinct stages: Stage 1, tourmaline+quartz+Fe-Cu ore mineralization; Stage II, quartz+sulfides+sulfosalts+carbonates; Stage 111, barren calcite. Earliest fluids are recorded in stage I and early por-tions of stage II veins as hypersaline (35~70 equiv. wt.% NaCl+KCl) and vapor-rich inclusions which homogenize from ~30$0^{\circ}C$ to $\geq$50$0^{\circ}C$. The high-salinity fluids are complex chloride brines with significant concentrations of sodium, potassium, iron, copper, and sulfur, though sulfide minerals are not associated with the early mineral assemblage produced by this fluid. Later solutions circulated through newly formed fractures and reopened veins, and are recorded as lower-salinity(less than ~20 equiv. wt.% NaCl) fluid inclusions which homogenize primarily from ~200 to 40$0^{\circ}C$. The oxygen and hydrogen isotopic compositions of fluid in the Haman-Gunbuk hydrothermal system represents a progressive shift from magmatic-hydrothermal dominance during early mineralization stage toward meteoric-hydrothermal dominance during late mineralization stage. The earliest hydrothermal fiuids to circu-late within the granodiorite stock localiring the ore body at Haman-Gunbuk could have exsolved from the crystal-lizing magma and unmixed into hypersaline liquid and $H_2O$-NaCl vapor. As these magmatic fluids moved throughfractures, tourmaline and early Fe, W, Mo, Cu ore mineralization occurred without concomitant deposition of othersulfides and sulfosalts. Later solutions of dominantly meteoric origin progressively formed hypogene copper and base-metal sulfides, and sulfosalt mineralization.

A Geochemical Study on the Chindong and Yucbeon - Eonyang Granites in Relation to Mineralization (진동화강암 및 유천-언양화강암의 광화작용에 관한 지화학적 연구)

  • Lee, Jae Yeong
    • Economic and Environmental Geology
    • /
    • v.22 no.1
    • /
    • pp.21-34
    • /
    • 1989
  • Chindong granites are classified into granodiorite, tonalite and quartz-diorite, and Yucheon - Eonyang granites into monzo-granite by the Streckeisen diagram. These granitic rocks of Cretaceous age show trend of calc-alkaline magma, and the magmatic evolution from basic to acidic rocks is consistant with the general crystallization path of the Cretaceous granitic rocks in the Gyeongsang basin. On the basis of petrological and petrochemical data, variation of major elements (K, Na, Ca, Mg) and trace elements (Rb, Sr, Ba) including ore metals (Cu, Pb, Zn) in the Cretaceous granitic rocks were studied in detail in order to investigate geochemical difference of the granitic rocks in relation to mineralization between Cu province and Pb-Zn province in the Gyeongsang basin. There is clear difference in content of the major elements between Chindong granites and Yucheon-Eonyang granites : Chindong granites have low content of K (1.62%) and Na (2.53%), and high content of Ca (3.75%) and Mg (1.42%) whereas Yucheon-Eonyang granites have high content of K (3.56-3.60%), and low content of Ca (0.96-0.26%) and Mg (0.26-0.21%). There is also clear difference in content of trace lithophile elements between Chindong granites and Yucheon-Eonyang, granites : Chindong granites have low content of Rb (86ppm) and Ba (330ppm), and high content of Sr (405ppm) while Yucheon-Eonyang, granites have high content of Rb (144-161ppm) and Ba (983-1030ppm), and low content of Sr (157-136ppm). The lithophile trace elements of Rb and Sr vary with close relationship to major elements of K and Ca, respectively. Therefore, Chindong granites are much easily distinguished from Yucheon-Eonyang granites by using relationship of K with Rb and Ca with Sr : K<3%, Rb<100ppm, Ca<2% and Sr>200ppm for Chindong granites, and K>3%, Rb>100ppm, Ca<2%, and Sr<200ppm for Yucheon-Eonyang granites. There is not clear difference in content of trace ore metals between Chindong granites and Yucheon-Eonyang granites : Chindong granites of the Cu province have low Cu content (15ppm) which is nearly equal to 13-14ppm of Yucheon-Eonyang granites of the Pb-Zn province, and Yucheon-Eonyang granites have Pb content (29-27ppm) which is rather lower than 37ppm of Chindong granites. But Cu is anomalously high in the mineralized part of Chindong granites in Gunbuk-Haman area, and Zn is apparently higher in Yucheon-Eonyang granites (51-37ppm) than in Chindong granites (29ppm). K/Pb ratio is also c1early distinguishable between Chindong granites (<850) and Yucheon-Eonyang granites (>850). Thus, it may be possible to apply geochemical difference of the granites to distinguish whether a Cretaceous granitic body is Cu related rock or Pb-Zn related rock, and whether it belongs to Cu province or Pb-Zn province in the Gyeongsang basin.

  • PDF