• Title/Summary/Keyword: Haloxylon

Search Result 7, Processing Time 0.026 seconds

In vitro Multiplication of Haloxylon recurvum (Moq.) - a Plant for Saline Soil Reclamation

  • Dagla Harchand R.;Shekhawat N.S.
    • Journal of Plant Biotechnology
    • /
    • v.7 no.3
    • /
    • pp.155-160
    • /
    • 2005
  • Haloxylon recurvum (Locally known as Khar) is drought and salt tolerant plant of Thar Desert. This plant is a major biomass producer and has economic and ecological importance for the region. There is need for study on biology, propagation and genetic improvement for utilization of this plant for reclamation of saline soils. We report here on in vitro propagation of Haloxylon recurvum (Moq.) using nodal explant. Secretion of phenolic compound from explants was a major constraint for establishment of culture. This was checked by thorough washing and quick transfer of explant on fresh culture medium. Juvenile nodal explant with leaves was found suitable for culture establishment. Benzy-ladenine($4.0\;{\mu}M$) incorporated in Murashige and Skoog (MS) medium with additives (50 mg/L ascorbic acid and 25 mg/L each of adenine sulphate, arginine and citric acid) induced multiple shoots from nodal explant. Addition of $1.0\;{\mu}M$ naphthalene acetic acid (NAA) in combination with $4.0\;{\mu}M$ BAP improved the growth of axillary shoots. Further shoot amplification was achieved by repeated subculture of mother explants on fresh medium. Forty percent of the micropropagated shoots rooted on half-strength MS medium with $4.0\;{\mu}M$ indolebutyric acid (IBA) and 100 mg/L activated charcoal, at $28{\pm}2^{\circ}C$ and $60\%$ RH. Sixty percent of these plantlets were hardened in green house.

Change in three dry rangeland species growth and soil properties by compost application

  • Sadeghi, Hossein;Shourije, Fatemeh Ansar;Masoudi, Masoud
    • Journal of Ecology and Environment
    • /
    • v.35 no.2
    • /
    • pp.131-140
    • /
    • 2012
  • There are different types of compost used as soil conditioners and fertilizers. Plants can have different responses to different forms of compost. This field study was performed to examine the effects of different types of compost on growth factors of three dry rangeland species (Atriplex, $Atriplex$ $lentiformis$; Saltwort, $Seidlitzia$ $rosmarinus$; Haloxylon, $Haloxylon$ $persicum$) and soil properties. The experiment was conducted in the Fars Province of Iran during the year 2010-2011. Compost applications consisted of compost tea, solid compost (SC), solid and liquid mixture (MX) and no compost as the control. The study was a factorial experiment based on a randomized complete block design with 3 replications. The results showed that all the tested compost applications enhanced the growth traits of all three species. It was also demonstrated that the use of compost significantly increased the organic matter (1% probability level [PL]), nitrogen concentration (5% PL), phosphorous (5% PL) and potassium (5% PL) concentrations of the soil. The soil's pH level was unchanged (range, 7.3 to 7.6), and the sodium concentration was also significantly decreased (1% PL) by the use of compost. The higher responses were observed in canopy volume and soil sodium and the lower were observed in stem diameter and soil pH level. Among the three plants in the study, Atriplex showed the best response to the application of compost. Based on the results of this study, it can be recommended that the best compost application to increase growth and improve soil condition is the mixed compost (MX) for Atriplex and the SC for Saltwort and Haloxylon.

The impact of cardinal temperature variation on the germination of Haloxylon aphyllum L. seeds

  • Taghvaei, Mansour;Ghaedi, Masoumaeh
    • Journal of Ecology and Environment
    • /
    • v.33 no.3
    • /
    • pp.187-193
    • /
    • 2010
  • Seed germination is a biological process that is affected by a variety of genetic and environmental factors. The cardinal temperature and thermal time are required for germination. The principal objective of this study was to identify and characterize variations in the base, optimum, and maximum germination temperatures of Haloxylon aphyllum L. from two seed sources, in order to establish models for use in predicting seeding dates. Mature H. aphyllum seeds were germinated at temperatures between 5 and $35^{\circ}C$. The germination behavior of H. aphyllum seeds to different temperature regimens in light was evaluated over a temperature range of $5-35^{\circ}C$ at intervals of $5^{\circ}C$. The rate of germination increased between base and optimum thermal conditions, and decreased between optimum and maximum thermal conditions; the germination rate varied in a linear fashion at both sub-optimal and supra-optimal temperatures. The linear regression fit the range of germination rates at $5^{\circ}C$ to $25^{\circ}C$ and $25^{\circ}C$ to $30^{\circ}C$, and thus the base temperature, optimum temperature, and maximum temperature for the germination of H. aphyllum were measured to be $0.6^{\circ}C$, $25.69^{\circ}C$, $37.90^{\circ}C$, and $1.76^{\circ}C$, $21.56^{\circ}C$, $37.90^{\circ}C$ for Qom and the Fars dune desert respectively.

Construction and Differential Screening of a cDNA Library Specific to Osmotic Stress of Haloxylon ammodendron Seedlings

  • Jiang, Xiao-Cheng;Guo, Xin-Hong;Pan, Xiao-Ling;Song, Song-Quan
    • BMB Reports
    • /
    • v.37 no.5
    • /
    • pp.527-532
    • /
    • 2004
  • A subtracted cDNA library specific to osmotic stress of Haloxylon ammodendron (Mey.) Bge seedlings was constructed by suppression subtractive hybridization (SSH) and T/A cloning. SSH was performed between two groups of H. ammodendron seedlings, one was cultivated in Hoagland (H) solution as a driver and the other group was treated with osmotic stress of the Hoagland solution by the addition of 400 mM mannitol (M), as a tester. The library consisted of about 400 recombinant clones, with the average size being of 500 bp, ranging from 300 bp to 1500 bp. Using a PCR-select differential screening kit, 100 recombinant clones were randomly chosen from the subtracted cDNA library and hybridized with forward,reverse subtracted and unsubtracted probes for two rounds. As a result, 21 positive clones specific to osmotic stress were obtained and some of them were verified by Northern blot analysis. The sequencing analysis of 6 positive clones and the following homology comparison to GenBank [blastx] non-redundant databases characterized that two sequences obtained in this experiment may contribute to novel drought-related genes.

Growth and carbon storage of black saxaul in afforested areas of the Aralkum Desert

  • Chang, Hanna;An, Jiae;Khamzina, Asia;Lee, Woo-Kyun;Son, Yowhan
    • Korean Journal of Environmental Biology
    • /
    • v.37 no.4
    • /
    • pp.618-624
    • /
    • 2019
  • This study aimed to determine the growth and carbon storage of planted Haloxylon aphyllum in the Aralkum Desert in Kazakhstan. Six sites afforested in 2000, 2005, 2009, 2010, 2013, and 2017 were selected. The root collar diameter(cm) and height(m) were measured for all H. aphyllum in 30 m×44 m plots. Biomass accumulation (g m-2) and carbon storage(C g m-2) were calculated using allometric equations and the carbon concentration data of Haloxylon species. The diameters varied from 2.5 cm to 4.3 cm and the height varied from 106.2 cm to 223.7 cm. The growth of H. aphyllum was not linearly related to the afforestation year or soil properties. Tree growth might have been influenced by variations in the microclimate, such as temperature, precipitation, and dust storms. The mean total biomass accumulation was 20.57g m-2 and ranged from 2.42 g m-2 to 64.53 g m-2. The mean carbon storage was 9.70C g m-2 and ranged from 1.12 C g m-2 to 30.61 C g m-2. These biomass and carbon storage estimates were smaller than those reported for other Central Asian deserts, but afforestation enabled the generation of vegetative cover and consequently, carbon sequestration in the manmade Aralkum Desert.

Analysis of Some Desert Ecosystems Vegetation in Abu Dhabi Emirate, United Arab Emirates. Effect of Land Use

  • Mousa, Mohamed Taher;Ksiksi, Taoufik Salah
    • Journal of Forest and Environmental Science
    • /
    • v.25 no.1
    • /
    • pp.49-55
    • /
    • 2009
  • The present study analyses the effect of land use on the vegetation of some desert ecosystems in Abu Dhabi, United Arab Emirates (UAE). Three sites were selected to represent different types of land use, inside Umm Al-Banadeq forest, outside the forest and along Abu Dhabi-Al Ain Trucks Road. In total, fifty-two stands were examined; including a matrix of 14 species ${\times}$ 52 stands. Based on species cover data, stands were classified using TWINSPAN and ordinated using DCA. Four vegetation groups were generated at level three of classification. Zygophyllum mandavillei was dominant in most vegetation groups; Heliotropium bacciferum dominated vegetation groups inhabited the forest. Species richness, species turnover, relative evenness and relative concentration of dominance of forest vegetation groups were 2.8, 5.7, 0.7, and 2.0, respectively. The differences were attributed to both natural variability and forestry-induced changes, including change in land use, drainage and ploughing and shading by trees. Vegetation group inhabited Abu Dhabi-Al Ain Trucks Road, that were dominated by Haloxylon salicornicum and Zygophyllum mandavillei have high total cover (8.8 m per $m^{-1}$). Most community and vegetation attributes were significantly higher inside the forest than outside. Human interventions and environmental factors affected species diversity and abundance of these communities.

  • PDF

Studies on the Desertification Combating and Sand Industry Development(III) - Revegetation and Soil Conservation Technology in Desertification-affected Sandy Land - (사막화방지(沙漠化防止) 및 방사기술개발(防沙技術開發)에 관한 연구(硏究)(III) - 중국(中國)의 황막사지(荒漠沙地) 녹화기술분석(綠化技術分析) -)

  • Woo, Bo-Myeong;Lee, Kyung-Joon;Choi, Hyung-Tae;Lee, Sang-Ho;Park, Joo-Won;Wang, Lixian;Zhang, Kebin;Sun, Baoping
    • Journal of Korean Society of Forest Science
    • /
    • v.90 no.1
    • /
    • pp.90-104
    • /
    • 2001
  • This study is aimed to analyze and to evaluate the revegetation and soil conservation technology in desertification-affected sandy land, resulting from the project of "Studies on the desertification combating and sand industry development". Main native plants for combating desertification : The general characteristics of vegetation distribution in desertified regions are partially concentrated vegetation distribution types including the a) desert plants in low zone of desert or sanddune of depressed basin, b) salt-resistant plants around saline lakes, c) grouped vegetation with Poplar and Chinese Tamarix of freshwater-lakes, saline-lakes and river-banks, d) gobi vegetation of gravel desert and e) grassland and oasis-woods around the alluvial fan of rivers, etc. Generally, Tamarix ehinensis Lour., Haloxylon ammodendron Bunge., Calligonum spp., Populus euphratica Oliver., Elaeagnus angustifolia L., Ulmus pumila L., Salix spp., Hedysarum spp., Caragana spp., Xanthoceras sorbifolia Bunge., Nitraria tangutorum Bobr., Lespedeza bicolor, Alhagi sparsifolia Shap., Capparis spinosa L., Artemisia arenaria DC., etc. are widely distributed in desertified regions. It is necessary for conducting research in the native plants in desertified regions. Analysis of intensive revegetation technology system for combating desertification : In the wind erosion region, the experimental research projects of rational farming systems (regional planning, shelterbelts system, protection system of oasis, establishment of irrigation-channel networks and management technology of enormous farmlands, etc.), rational utilization technology of plant resources (fuelwood, medicinal plants, grazing and grassland management, etc.), utilization technology of water resources (management and planning of watershed, construction of channel and technology of water saving and irrigation, etc.), establishment of sheltetbelts, control of population increase and increased production technology of agricultural forest, fuelwood and feed, etc. are preponderantly being promoted. And in water erosion region, the experimental research projects of development of rational utilization technology of land and vegetation, engineering technology and protection technology of crops, etc. are being promoted in priority. And also, the experimental researches on the methods of utilization of water (irrigation, drainage, washing and rice cultivation, etc.), agricultural methods (reclamation of land, agronomy, fertilization, seeding, crop rotation, mixed-cultivation and soil dressing works, etc.) and biological methods (cultivation of salt-resistant crops and green manure and tree plantation, etc.) for improvement of saline soil and alkaline soil in desertified-lands are actively being promoted. And the international cooperations on the revegetation technology development projects of desertified-lands are sincerely being required.

  • PDF