• Title/Summary/Keyword: Halococcus

Search Result 3, Processing Time 0.015 seconds

Purification and characterization of TPx from archeabacteria, Halococcus agglomeratus (고염 원시박테리아(Halococcus agglomeratus)에 존재하는 TPx 분리 및 생화학적 특성연구)

  • Choi, Yong-Soo;Cha, Mee-Kyung;Kim, Il-Han
    • The Journal of Natural Sciences
    • /
    • v.14 no.2
    • /
    • pp.67-82
    • /
    • 2004
  • A thiol-specific antioxidant protein (TSA or TPx) was purified from Halophilic archeabacteria Halococcus agglomeratus, by DEAE-Cellulose, Phnyl, sepharose, Sephadex G-75, Sephacryl S-100, Sephacryl S-200, and Q-Wepharose FF. This protein exhibited the preventeive effect against the inactivation of glutamine synthehase (GS) activity was support by a thiol-reducing equicalent such as dithiothreitol. TPx activity was maximal at NaCl concentration above 500mM. The molecular mass of the protein was determinated to be 22-kDa by SDS-PAGE. The TPx purified from Halococcus agglomeratus seems to be similar to other TPx family, except for the salt requirement for the maximal antioxidant activity.

  • PDF

Identification and Characteristics of Extreme Halophilic bacteria Isolated from a Saltern in Korea (한국 염전으로 부터 분리한 고도 호염성 세균의 동정 및 특성)

  • Bae, Moo;Lee, Jeong-Im
    • Korean Journal of Microbiology
    • /
    • v.29 no.1
    • /
    • pp.56-62
    • /
    • 1991
  • Extremely halophilic bacteria isolated from salterns at Mado, Kyunggido, Korea, were identified and investigated on their salt requirements. The results have shown that six strains were identified to be belonged to the genus Halobacterium and three strains identified as the fenus Halococcus. Among them, the optimal NaCl concentration for growth of Halobacterium sp. EH10 was at 4.2M and no growth occurs below 2.0M NaCl. The strain, EH10, is nonmotile and showed acid production from glucose, fructose and maltose while H. salinarum is motile and does not produce acid from any carbohydrates. On the other hand, the strain EH10 does not utilize readily glucose while a number of sugars are readily utilized for growth with acid production by H. saccharovorum. Thus, the isolate, EH10, was classified into the genus Halobacterium and could be a novel species of the genus by its main morphological and physiological features including G+C content. The optimal temperature for growth of the isolate, EH10, was 50.deg.C. But this strain did not grow when NaCl was replaced with KCl.

  • PDF

Characterization of the Microbial Diversity in a Korean Solar Saltern by 16S rRNA Gene Analysis

  • Park, Soo-Je;Kang, Cheol-Hee;Rhee, Sung-Keun
    • Journal of Microbiology and Biotechnology
    • /
    • v.16 no.10
    • /
    • pp.1640-1645
    • /
    • 2006
  • We studied the diversity of the halophilic archaea and bacteria in crystallizer ponds of a Korean solar saltern by analyzing 16S rRNA gene libraries. Although diverse halophilic archaeal lineages were detected, the majority (56%) were affiliated with the uncultured and cultured Halorubrum group. Halophilic archaea that have been frequently observed in solar saltern environments previously, such as Halogeometricum, Halococcus, Haloarcula, and Haloferax, were not detected in our samples. The majority of clones (53%) belonged to the Cytophaga-Flavobacterium-Bacteroides and ${\alpha}-,\;{\gamma}-,\;and\;{\delta}-Proteobacteria$ groups, with 47% of the clones being affiliated with ${\gamma}-Proteobacteria$. We also identified new ${\delta}-Proteobacteria$-related bacteria that have not been observed in hypersaline environments previously. Our data show that the diversity of the halophilic archaea and bacteria in our Korean saltern differs from that of solar salterns found in other geographic locations. We also showed by quantitative real-time PCR analysis that bacteria can form a significant component of the microbial community in solar salterns.