• Title/Summary/Keyword: Haloacetic Acid

Search Result 33, Processing Time 0.016 seconds

Removal Characteristics of Chlorination Disinfection By-Products by Activated Carbons (활성탄 공정에서의 염소 소독부산물 제거특성)

  • Son, Hee-Jong;Roh, Jae-Soon;Kim, Sang-Goo;Bae, Seog-Moon;Kang, Lim-Seok
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.27 no.7
    • /
    • pp.762-770
    • /
    • 2005
  • Adsorption and biodegradation performance of chlorinated by-products such as trihalomethanes(THMs) and haloacetic acids(HAA5) on granular activated carbon were evaluated in this study. The coconut-based activated carbon was found more effective than others in adsorption of THMs due to larger pore volume of less than $20{\AA}$. The wood-based activated carbon was less effective than coconut- and coal-based activated carbon in adsorption nevertheless having larger pore volume and specific surface area than others. The maximum adsorption capacity(X/M) of coconut-based carbon for THMS was 1.1-1.5 times larger than coal based carbon and 14.1-31.4 times larger than wood based activated carbons. Activated carbon usage rate(CUR) of coconut-, coal- and wood-based activated carbons for chloroform were 9.4, 11.2 and 38 g/day respectively. In the evaluation of adsorption isotherm of THM species for coconut-, coal- and wood-based activated carbons, k value of chloroform was the lowest in the THM species, It menas that chloroform is difficult to remove by activated carbon adsorption. and BDCM, CDBM, bromoform are in the succeeding order of adsorption. In the evaluation of biodegradation rate, mean biodegradation rate was chloroform 7%, BDCM 5%, CDBM 4% and bromoform 3%, respectively THMs are difficult materials to be biodegraded. In the evaluation of characteristics of adsorption and biodegradation for HAA5 species, HAA5 species appear to be removed effectively by activated carbon. Most of the HAA5 are adsorbed at the beginning of operation periods and HAA5 except TCAA were almost biodegraded from bed volume of 2,000 and more than 90 percent of biodegradation of TCAA was started from bed volume around 4,000 and after that biodegradation rate was increased with increasing bed volume.

Generation characteristics of disinfection by-products (DBPs) by chlorination in sewage effluent (하수처리장 방류수의 염소소독부산물 발생 특성)

  • Seo, Hee-Jeong;Kim, Jong-Min;Min, Kyoung-Woo;Kang, Yeoung-Ju;Paik, Kye-Jin;Park, Jong-Tae;Kim, Seong-Jun
    • Analytical Science and Technology
    • /
    • v.22 no.3
    • /
    • pp.272-276
    • /
    • 2009
  • This study was performed to investigate the disinfection efficiency and the generation characteristics of disinfection by-products (DBPs) in the sewage effluent. In the case of total coliforms, disinfection efficiency higher than 99%, the required contact time was 30 min at chlorine dose of 0.5 mg/L, 20 min at 1.0 mg/L, and 10 min at 1.5 mg/L, respectively. When the sewage effluent was disinfected with chlorine dose of 0.5 mg/L for 10 min, the maximum generation concentration of trihalomethanes (THMs), haloacetonitriles (HANs) and haloacetic acid (HAAs) were $32.2{\mu}g/L$, $2.97{\mu}g/L$, and $16.29{\mu}g/L$, respectively. The concentration of chloroform was $28.4{\mu}g/L$ corresponding to 88.1% of the THMs. The concentration of HANs and HAAs were found to be inconsiderable. The average residual chlorine concentration of sewage effluent was 0.4 mg/L, the generation concentration of THMs was maximum $1.72{\mu}g/L$ and average $2.79{\mu}g/L$. HANs and HAAs were under the detection limit by GC/MSD.

Application of Enhanced Coagulation for Nakdong River Water Using Aluminium and Ferric Salt Coagulants (낙동강 원수를 대상으로 Al염계 및 Fe염계 응집제를 이용한 고도응집의 적용)

  • Moon, Sin-Deok;Son, Hee-Jong;Yeom, Hoon-Sik;Choi, Jin-Taek;Jung, Chul-Woo
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.34 no.9
    • /
    • pp.590-596
    • /
    • 2012
  • Enhanced coagulation is best available technologies to treat NOM in water to produce clean drinking water. In this research, the comparison experiments between conventional coagulation (CC) and enhanced coagulation (EC) using 4 type coagulants i.e., ferric chloride, aluminium sulphate (alum), poly aluminium sulphate organic magnesium (PSOM) and poly aluminium chloride (PACl) were performed in terms of surrogate parameters such as dissolved organic carbon (DOC), trihalomethane formation potential (THMFP), haloacetic acid formation potential (HAAFP) and zeta potential variation in order to find out the most effective coagulant and conditions to fit Nakdong River water. When applied to EC process, the turbidity removal efficiency did not increased gradually compared to the CC process when adding coagulants. Furthermore, the removal efficiency of turbidity became decreased much more as coagulants were added increasingly whereas the removal efficiency of DOC, THMFP and HAAFP became increased by 13~18%, 9~18% and 9~18% respectively compared to the CC process. The characteristics of turbidity removal showed relatively high removal efficiency considering the pH variation in entire pH range when using $FeCl_3$ and PACl. Additionally, in case of alum and PSOM steady removal efficiency was shown between pH 5 and pH 8. In terms of DOC surrogate the coagulants including 4 type coagulants indicated high removal efficiency between pH 5 and pH 7. The removal efficiency of dissolved organic matter (DOM) in EC between less than 1 kDa and more than 10 kDa augmented by 11~21% and 16% respectively compared to the CC process. The removal efficiency of hydrophobic and hydrophilic organic matter proved to be increased by 27~38% and 11~15% respectively. In conclusion, the most effective coagulant relating to EC for Nakdong River water was proved to be $FeCl_3$ followed by PSOM, PAC and alum in order.