• 제목/요약/키워드: Halo

검색결과 628건 처리시간 0.027초

Disruption time scale of merged halos in a dense cluster environment

  • Shin, Jihye;Taylor, James E.;Peng, Eric
    • 천문학회보
    • /
    • 제41권2호
    • /
    • pp.60.1-60.1
    • /
    • 2016
  • To obtain a reliable estimate of the cold dark matter (CDM) substructure mass function in a dense cluster environment, one needs to understand how long a merged halo can survive within the host halo. Measuring disruption time scale of merged halos in a dense cluster environment, we attempt to construct the realistic CDM mass function that can be compared with stellar mass functions to get a stellar-to-halo mass ratio. For this, we performed a set of high-resolution simulations of cold dark matter halos with properties similar to the Virgo cluster. Field halos outside the main halo are detected using a Friend-of-Friend algorithm with a linking length of 0.02. To trace the sub-halo structures even after the merging with the main halo, we use their core structures that are defined to be the most 10% bound particles.

  • PDF

The evolution of dark matter halo profiles in a cosmological context

  • Park, Jinwoo;Choi, Hoseung;Yi, Sukyoung
    • 천문학회보
    • /
    • 제42권2호
    • /
    • pp.73.3-73.3
    • /
    • 2017
  • Environment has a significant impact on the evolution of dark halo profiles. We used a cosmological N-body simulation based on WMAP5 cosmology to study environmental effects on halo profiles. Host haloes located in sparse regions are highly concentrated, and more massive haloes have higher concentration index. This is because mass accretion affects only the outer part of the halo and consequently increase the virial radius having no effect on the scale radius. Conversely, host haloes located in dense regions have low concentration index. This is because frequent mergers affect even the inner part of the halo. So, scale radius increases with the growth of virial radius. Evolutions of subhalo profiles are essentially different from those of host haloes because subhaloes undergo tidal stripping. The stripping begins once a subhalo approaches closer than ~3 virial radii of the host halo. During the stripping, the inner part of the subhalo keep following NFW profile, but the mass of the outer part gradually decreases. As a result, when the subhalo reaches the pericenter of its host, only about inner 30% of the subhalo follows the NFW profile.

  • PDF

Chemical and Kinematic Properties of the Galactic Halo System

  • Jung, Jaehun;Lee, Young Sun;Kim, Young Kwang
    • 천문학회보
    • /
    • 제42권2호
    • /
    • pp.80.2-80.2
    • /
    • 2017
  • We present chemical and kinematic properties of the Milky Way's halo system investigated by carbon-enhanced metal-poor (CEMP) stars identified from the Sloan Digital Sky Survey. We first map out fractions of CEMP-no stars (those having no over-abundances of neutron-capture elements) and CEMP-s stars (those with over-enhancements of the s-process elements) in the inner- and outer-halo populations, separated by their spatial distribution of carbonicity ([C/Fe]). Among CEMP stars, the CEMP-no and CEMP-s objects are classified by different levels of absolute carbon abundances, A(C). We investigate characteristics of rotation velocity and orbital eccentric for these subclasses for each halo population. Any distinct kinematic features identified between the two categories in each halo region provide important clues on the origin of the dichotomy of the Galactic halo.

  • PDF

HALO EMISSION OF THE CAT’S EYE NEBULA, NGC 6543: SHOCK EXCITATION BY FAST STELLAR WINDS

  • Hyung, Siek;Lee, Seong-Jae
    • Journal of Astronomy and Space Sciences
    • /
    • 제19권3호
    • /
    • pp.173-180
    • /
    • 2002
  • Images taken with the Chandra X-ray telescope have for the the first time revealed the central, wind-driven, hot bubble (Chu et al. 2001), while Hubble Space Telescope (HST) WFPC2 images of the Cat's Eye nebula, NGC 6543, show that the temperature of the halo region of angular radius ~ 20", is much higher than that of the inner bright H II region. With the coupling of a photoionization calculation to a hydrodynamic simulation, we predict the observed 〔O III〕 line intensities of the halo region with the same O abundance as in the core H II region: oxygen abundance gradient does not appear to exist in the NGC 6543 inner halo. An interaction between a (leaky) fast stellar wind and halo gas may cause the higher excitation temperatures in the halo region and the inner hot bubble region observed with the Chandra X-ray telescope.

Auto-detection of Halo CME Parameters as the Initial Condition of Solar Wind Propagation

  • Choi, Kyu-Cheol;Park, Mi-Young;Kim, Jae-Hun
    • Journal of Astronomy and Space Sciences
    • /
    • 제34권4호
    • /
    • pp.315-330
    • /
    • 2017
  • Halo coronal mass ejections (CMEs) originating from solar activities give rise to geomagnetic storms when they reach the Earth. Variations in the geomagnetic field during a geomagnetic storm can damage satellites, communication systems, electrical power grids, and power systems, and induce currents. Therefore, automated techniques for detecting and analyzing halo CMEs have been eliciting increasing attention for the monitoring and prediction of the space weather environment. In this study, we developed an algorithm to sense and detect halo CMEs using large angle and spectrometric coronagraph (LASCO) C3 coronagraph images from the solar and heliospheric observatory (SOHO) satellite. In addition, we developed an image processing technique to derive the morphological and dynamical characteristics of halo CMEs, namely, the source location, width, actual CME speed, and arrival time at a 21.5 solar radius. The proposed halo CME automatic analysis model was validated using a model of the past three halo CME events. As a result, a solar event that occurred at 03:38 UT on Mar. 23, 2014 was predicted to arrive at Earth at 23:00 UT on Mar. 25, whereas the actual arrival time was at 04:30 UT on Mar. 26, which is a difference of 5 hr and 30 min. In addition, a solar event that occurred at 12:55 UT on Apr. 18, 2014 was estimated to arrive at Earth at 16:00 UT on Apr. 20, which is 4 hr ahead of the actual arrival time of 20:00 UT on the same day. However, the estimation error was reduced significantly compared to the ENLIL model. As a further study, the model will be applied to many more events for validation and testing, and after such tests are completed, on-line service will be provided at the Korean Space Weather Center to detect halo CMEs and derive the model parameters.

On the Use of the Number Count of Blue Horizontal-Branch Stars to Infer the Dominant Building Blocks of the Milky Way Halo

  • Chung, Chul;Lee, Young-Wook;Pasquato, Mario
    • 천문학회보
    • /
    • 제40권2호
    • /
    • pp.57.3-57.3
    • /
    • 2015
  • The formation of the Milky Way stellar halo is thought to be the result of merging and accretion of building blocks such as dwarf galaxies and massive globular clusters. Recently, Deason et al. (2015) suggested that the Milky Way outer halo formed mostly from big building blocks, such as dwarf spheroidal galaxies, based on the similar number ratio of blue straggler (BS) stars to blue horizontal-branch (BHB) stars. Here we demonstrate, however, that this result is seriously biased by not taking into detailed consideration on the formation mechanism of BHB stars from helium enhanced second-generation population. In particular, the high BS-to-BHB ratio observed in the outer halo fields is most likely due to a small number of BHB stars provided by GCs rather than to a large number of BS stars. This is supported by our dynamical evolution model of GCs which shows preferential removal of first generation stars in GCs. Moreover, there are sufficient number of outer halo GCs which show very high BS-to-BHB ratio. Therefore, the BS-to-BHB number ratio is not a good indicator to use in arguing that more massive dwarf galaxies are the main building blocks of the Milky Way outer halo. Several lines of evidence still suggest that GCs can contribute a signicant fraction of the outer halo stars.

  • PDF

Halo interactions in the Horizon run 4 simulation

  • L'Huillier, Benjamin;Park, Changbom;Kim, Juhan
    • 천문학회보
    • /
    • 제39권2호
    • /
    • pp.46-46
    • /
    • 2014
  • Interactions such as mergers and flybys play a fundamental role in shaping galaxy morphology. We used the Horizon Run 4 cosmological N-body simulations to study the frequency and the type of halo interactions as a function of the environment, the separation p, the mass ratio q, and the target halo mass. We defined targets as haloes more massive than 10^11 Msun/h, and a target is interacting if it is located within the virial radius of a neighbour halo more massive than 0.4 times the target mass. We find that the interaction rate as a function of time has a universal shape for different halo mass and large-scale density, with an increase and saturation. Larger density yield steeper slopes and larger final interaction rates, while larger masses saturate later. Most interactions happen at large-scale density contrast ${\delta}$ about 10^3, regardless of the redshift. We also report the existence of two modes of interactions in the (p,q) plane, reflecting the nature (satellite or main halo) of the target halo. These two trends strongly evolve with redshift, target mass, and large-scale density. Interacting pairs have similar spins parameters and aligned spins, with radial trajectories, and prograde encounters for non-radial trajectories. The satellite trajectories become less and less radial as time proceed. This effect is stronger for higher-mass target, but independent of the large-scale density.

  • PDF

Discovery of the Extraplanar FUV Halo of NGC 891

  • 선광일
    • 천문학회보
    • /
    • 제35권1호
    • /
    • pp.76.2-76.2
    • /
    • 2010
  • We report the extended far-ultraviolet (FUV) halo of NGC 891 above the galactic plane. The FUV intensity distribution is well described by two exponential components, one with the scale height of ~0.34 kpc and the other of ~2.3 kpc. The extraplanar FUV halo is traceable up to > 5 kpc. The FUV halo is attributable to scattered-off starlight by extraplanar dust. Using Monte-Carlo radiative transfer simulations, the FUV intensity distribution along the minor axis is found to be well modeled with two dust comonents. Its implications are discussed.

  • PDF

포켓 이온주입으로 비균질 채널도핑을 갖는 MOSFET소자의 드레인 전류 해석 (Analysis of the Drain Current in Nonuniformly Doped Channel(NUDC) MOSFET's due to Pocket Ion Implantation)

  • 구회우;박주석;이기영
    • 전자공학회논문지D
    • /
    • 제36D권9호
    • /
    • pp.21-30
    • /
    • 1999
  • OSFET 소자의 펀치스루 현상 및 문턱전압의 roll-off 방지하는 효율적 방법으로 알려져 있는 halo 포켓 이온주입방법은 MOSFET 드레인 전류의 감소를 가져온다. Halo 구조 MOSFET의 드레인 전류 감소는 보통 문턱 전압의 증가로 설명되고 있으나, 실험적으로 드레인 전류의 감소는 문턱전압의 증가로 예상된 드레인 전류 감소 보다 크게 관찰되고 있다. 본 연구에서는 halo 도핑분포에 의해서 채널방향으로 생성되는 전계분포의 효과에 의한 드레인 전류의 감소를 분석하였다. 포켓 이온주입에 의한 halo MOSFET 소자의 유효 이동도 모델을 제시하였고, 유효 이동도의 감소가 드레인 전류의 추가적인 감소에 기여함을 보였다. 제시된 모델에 따른 소자의 특성이 실험결과와 일치함을 보였다.

  • PDF

HORIZON RUN 4 SIMULATION: COUPLED EVOLUTION OF GALAXIES AND LARGE-SCALE STRUCTURES OF THE UNIVERSE

  • KIM, JUHAN;PARK, CHANGBOM;L'HUILLIER, BENJAMIN;HONG, SUNGWOOK E.
    • 천문학회지
    • /
    • 제48권4호
    • /
    • pp.213-228
    • /
    • 2015
  • The Horizon Run 4 is a cosmological N-body simulation designed for the study of coupled evolution between galaxies and large-scale structures of the Universe, and for the test of galaxy formation models. Using 63003 gravitating particles in a cubic box of Lbox = 3150 h−1Mpc, we build a dense forest of halo merger trees to trace the halo merger history with a halo mass resolution scale down to Ms = 2.7 × 1011h−1M. We build a set of particle and halo data, which can serve as testbeds for comparison of cosmological models and gravitational theories with observations. We find that the FoF halo mass function shows a substantial deviation from the universal form with tangible redshift evolution of amplitude and shape. At higher redshifts, the amplitude of the mass function is lower, and the functional form is shifted toward larger values of ln(1/σ). We also find that the baryonic acoustic oscillation feature in the two-point correlation function of mock galaxies becomes broader with a peak position moving to smaller scales and the peak amplitude decreasing for increasing directional cosine μ compared to the linear predictions. From the halo merger trees built from halo data at 75 redshifts, we measure the half-mass epoch of halos and find that less massive halos tend to reach half of their current mass at higher redshifts. Simulation outputs including snapshot data, past lightcone space data, and halo merger data are available at http://sdss.kias.re.kr/astro/Horizon-Run4.