• Title/Summary/Keyword: Hall sensor position

Search Result 113, Processing Time 0.027 seconds

Characteristics of Torque and Vibration-Noise take into account Permanent Magnet Overhang of BLDC Motor for Robots (로봇 구동용 BLDC Motor의 영구자석 오버행에 따른 토크 및 진동.소음 특성)

  • Kang, Gyu-Hong;Kim, Duck-Hyun
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.55 no.7
    • /
    • pp.346-352
    • /
    • 2006
  • In Brushless DC Motor, there are Permanent Magnets (PMs) with driving circuit and sensor for detecting to rotor position and rotation speed. In the case of using hall IC sensor which response to magnetic flux, that is required to additional sensor magnet for rotor position detecting. Most of BLDC motor, However, take asymmetrical overhang of PM in rotor instead of additional sensor magnet for operating of hall IC sensor. The asymmetrical overhang of PM occur rotor thrust to z-axis direction that is lead to not only damage of bearing but also intensive noise and vibration. Therefore, the analysis of magnet overhang effect in the side of vibration and drive to hall If sensor is required to precise. In this paper, 2-D Finite Element Method is used to solve precise field computation and thrust of z-axis direction considering asymmetrical magnet overhang. And also the z-axis thrust from the analysis result is compared to experimental result. In conclusion, the purpose of this paper minimize to noise and vibration of BLDC Motor as analyzes to asymmetrical magnet overhang effect.

Development of 2-Axis Solar Tracker with BLDC Motor-Cylinder Actuator and Hall Sensor Feedback (BLDC 모터-실린더 구동, 홀센서 피드백 방식의 2축 태양광 추적장치 개발)

  • Lho, Tae-Jung;Lee, Seung-Hyeon;Park, Min-Yong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.7
    • /
    • pp.2334-2340
    • /
    • 2010
  • Sun position computed by Michalsky shows maximum $1.5^{\circ}$, $0.88^{\circ}$ and 2 minutes differences in azimuth, altitude, and sunrise and sunset times respectively compared with Korean Almanac. The 2-axis solar tracking system, which consist control panel with ATmega128 CPU, BLDC motor-cylinder actuator and 2-axis link mechanism, was developed. Computed azimuth and altitude of sun for a current time, and latitude and longitude of tracker position built are controlled in real time by BLDC motor-cylinder actuators comparing with the position feed-backed by Hall sensor. The use of BLDC motor is free in maintenance. Implementation of a home-return function by Hall sensor is to minimize the cumulative error.

Rotor Position Detection of CPPM Belt Starter Generator with Trapezoidal Back EMF using Six Hall Sensors

  • Xu, Jiaqun;Long, Feng;Cui, Haotian
    • Journal of Magnetics
    • /
    • v.21 no.2
    • /
    • pp.173-178
    • /
    • 2016
  • Six-step commutation control widely used in brushless DC (BLDC) motor can be applied to consequent pole permanent magnet (CPPM) belt starter generator (BSG) with trapezoidal back electromotive force (EMF) in the starter state. However, rotor position detection with three Hall sensors in BLDC motor can hardly be employed in CPPM BSG due to asymmetric flux distribution in each pole side of CPPM BSG. This paper presents a low-cost rotor position detection method for CPPM BSG in which six Hall sensors are proposed to be used based on the analysis of flux distribution by 3D FEA. In the method, the six Hall sensors are divided into three groups and two signals in each group are combined through performing logic operations. In addition, offset angle between back EMF and the related Hall signal can be compensated by moving the Hall sensors. Experiments of a 2 kW CPPM BSG prototype have also been performed to verify the proposed method.

Development of Crack Examination Algorithm Using the Linearly Integrated Hall Sensor Array (선형 홀 센서 배열을 사용한 결함 검사 알고리즘 개발)

  • Kim, Jae-Jun;Kim, Byoung-Soo;Lee, Jin-Yi;Lee, Soon-Geul
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.27 no.11
    • /
    • pp.30-36
    • /
    • 2010
  • Previous researches show that linearly integrated Hall sensor arrays (LIHaS) can detect cracks in the steel structure fast and effectively This paper proposes an algorithm that estimates the size and shape of cracks for the developed LIHaS. In most nondestructive testing (NDT), just crack existence and location are obtained by processing 1-dimensional data from the sensor that scans the object with relative speed in single direction. The proposed method is composed with two steps. The first step is constructing 2-dimensionally mapped data space by combining the converted position data from the time-based scan data with the position information of sensor arrays those are placed in the vertical direction to the scan direction. The second step is applying designed Laplacian filter and smoothing filter to estimate the size and shape of cracks. The experimental results of express train wheels show that the proposed algorithm is not only more reliable and accurate to detecting cracks but also effective to estimate the size and shape of cracks.

Analysis of Magnetic Concentrator of Magnetic Sensor by Using Finite Element Method (유한요소법을 이용한 자기센서용 자속집속기의 해석)

  • Shin, Kwang-Ho
    • Journal of the Korean Magnetics Society
    • /
    • v.23 no.3
    • /
    • pp.89-93
    • /
    • 2013
  • In this study, magnetic concentrators which could be used to enhance sensitivity of Hall effect sensor were analyzed by using FEM. The parameters for FEM analysis were the thickness and edge shape of magnetic concentrator and relative position of magnetic concentrator against Hall element. Magnetic field in z direction decreased with increasing of the thickness of magnetic concentrator, of which tendency was similar to apparent relative permeability calculated with demagnetizing factor of magnetic concentrator. There were optimal thickness and edge shape of magnetic concentrator according to the relative position of magnetic concentrator against Hall element.

Position Correction Method for Misaligned Hall-Effect Sensor of BLDC Motor using BACK-EMF Estimation (역기전력 추정법을 이용한 브러시리스 직류 전동기의 홀센서 상전류 전환시점 보상 방법)

  • Park, Je-Wook;Kim, Jong-Hoon;Kim, Jang-Mok
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.17 no.3
    • /
    • pp.246-251
    • /
    • 2012
  • This paper proposes a new position compensation method for misaligned Hall-effect sensors of BLDCM(Brushless DC Motor). If the Hall-effect sensors are installed at wrong position, the exact rotor position cannot be obtained. Therefore, when the BLDCM is controlled with this wrong position, the torque ripple can be increased and the average torque also decreases. The back-EMF of BLDCM can be obtained by using the voltage equation and by multiplying the back-EMF constant and rotor speed. At a constant speed, the estimated back-EMF by using the multiplication of the back-EMF constant and rotor speed is constant, but the estimated back-EMF from the voltage equation decreases at the commutation point because the line-to-line back-EMF of two conducting phases is start to decrease at this point. Therefore, by using the difference between these two estimated back-EMFs, the commutation point of the phase current can be determined and position compensation can be carried out. The proposed position correction method doesn't require additional hardware circuit and can be easily implemented. The validity of the proposed position compensation method is verified through several experiments.

On-line Compensation Method for Magnetic Position Sensor using Recursive Least Square Method (재귀형 최소 자승법을 이용한 자기 위치 센서의 실시간 보상 방법)

  • Kim, Ji-Won;Moon, Seok-Hwan;Lee, Ji-Young;Chang, Jung-Hwan;Kim, Jang-Mok
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.12
    • /
    • pp.2246-2253
    • /
    • 2011
  • This paper presents the error correction method of magnetic position sensor using recursive least square method (RLSM) with forgetting factor. Magnetic position sensor is proposed for linear position detection of the linear motor which has tooth shape stator, consists of permanent magnet, iron core and linear hall sensor, and generates sine and cosine waveforms according to the movement of the mover of the linear motor. From the output of magnetic position sensor, the position of the linear motor can be detected using arc-tan function. But the variation of the air gap between magnetic position sensor and the stator and the error in manufacturing process can cause the variation in offset, phase and amplitude of the generated waveforms when the linear motor moves. These variations in sine and cosine waveforms are changed according to the current linear motor position, and it is very difficult to compensate the errors using constant value. In this paper, the generated sine and cosine waveforms from the magnetic position sensor are compensated on-line using the RLSM with forgetting factor. And the speed observer is introduced to reduce the effect of uncompensated harmonic component. The approaches are verified by some simulations and experiments.

Realization of Velocity of BLDC Motor Using Linear Type Hall-effect Sensor and Enhanced Differentiator (선형홀센서와 고성능 미분기를 이용한 BLDC모터의 속도신호 구현)

  • Gu, Jeong-Hoi;Choi, Jang-Young
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.67 no.7
    • /
    • pp.840-845
    • /
    • 2018
  • BLDC motor is widely used as a servo motor due to high efficiency, high power density, low inertia, and low maintenance. However, BLDC motor generally needs position and velocity sensors to control actuation system. Usually, analog tachometers and encoders have been used for velocity feedback sensors. However, using these types of sensors have problems such as the cost, space, and malfunction. So, This paper is to propose a new velocity measurement method using linear hall-effect and enhanced differentiator for BLDC motor. In order to verify the feasibility of the proposed method, several simulations and experiments are performed. It is shown that the proposed velocity measurement method can satisfy the requirements without using of velocity sensor.

Circuit Design for Noise Removal of Sine Wave Hall Sensor Signal (정현파 Hall Sensor 신호의 잡음제거를 위한 회로설계)

  • Jeong, Sungin
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.21 no.4
    • /
    • pp.135-141
    • /
    • 2021
  • Interest is growing in the design and development of square wave driven BLDC permanent magnet motors suitable for industrial automation, and the development of position detection circuits and drivers. However, this motor is somewhat limited in its application despite the price and functional advantages due to the decrease in efficiency due to switching loss and vibration and noise. In the process of designing and assembling a BLDC motor, the magnetic pole angle is not uniform or the magnetic flux distribution is distorted due to problems in magnetic circuit design or product non-uniformity in the assembly process. Therefore, these things cause position detection deviation and deteriorate the motor characteristics. In addition, the sine wave driven BLDC system can operate stably only when the signal generated from the position sensor is accurately fed back to the driver. However, since the generated signal cannot perform stable position detection due to the occurrence of DC offset component due to magnetic flux density deviation or magnetization technology, which is an external influence, this study intends to study the proposed circuit that can remove the DC offset component.

Position Recognition System for Autonomous Vehicle Using the Symmetric Magnetic Field

  • Kim, Eun-Ju;Kim, Eui-Sun;Lim, Young-Cheol
    • Journal of Sensor Science and Technology
    • /
    • v.22 no.2
    • /
    • pp.111-117
    • /
    • 2013
  • The autonomous driving method using magnetic sensors recognizes the position by measuring magnetic fields in autonomous robots or vehicles after installing magnetic markers in a moving path. The Position estimate method using magnetic sensors has an advantage of being affected less by variation of driving environment such as oil, water and dust due to the use of magnetic field. It also has the advantages that we can use the magnet as an indicator and there is no consideration for power and communication environment. In this paper, we propose an efficient sensor system for an autonomous driving vehicle supplemented for existing disadvantage. In order to efficiently eliminate geomagnetism, we analyze the components of the horizontal and vertical magnetic field. We propose an algorithm for position estimation and geomagnetic elimination to ease analysis, and also propose an initialization method for sensor applied in the vehicle. We measured and analyzed the developed system in various environments, and we verify the advantages of proposed methods.